Advertisement

Biology & Philosophy

, Volume 30, Issue 3, pp 333–357 | Cite as

Multicellular agency: an organizational view

  • Argyris Arnellos
  • Alvaro Moreno
Article

Abstract

We argue that the transition from unicellular to multicellular (MC) systems raises important conceptual challenges for understanding agency. We compare several MC systems (from bacterial swarms to colonies and plants, and to lower metazoans) displaying different forms of collective behavior, and we analyze whether these actions can be considered organismically integrated and attributable to the whole. We distinguish between a ‘constitutive’ and an ‘interactive’ dimension of organizational complexity, and we argue that MC agency requires a radical entanglement between the related processes which we call “the constitutive-interactive closure principle”. We explain in detail that this is not possible without a regulatory center functionally integrating the two dimensions, and we also argue that, in turn, this type of regulation would not be possible without a special type of organization between the cells required for the development and maintenance of systems capable of integrated behavior.

Keywords

Agency Organization Constitutive and interactive dimension Multicellularity Regulatory center Behavior Development Epithelium Closure 

Notes

Acknowledgments

We would like to thank Leonardo Bich and Werner Callebaut for reading earlier versions of the paper and making useful comments and suggestions. A.A. would like to thank the fellows and participants of the KLI Colloquia for their vivid discussion. A.M. acknowledges the grants of the Basque Government IT 590-13 and of the Spanish Ministerio de Industria e Innovación FFI2011-25665 and BFU2012-39816-C02-02. Finally, we would like to thank the two anonymous reviewers for useful suggestions that contributed to the improvement of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abedin M, King N (2010) Diverse evolutionary paths to cell adhesion. Trends Cell Biol 20(12):734–742CrossRefGoogle Scholar
  2. Anderson PA (1980) Epithelial conduction: its properties and functions. Prog Neurobiol 15:161–203CrossRefGoogle Scholar
  3. Anderson PA, Thompson LF, Moneypenny CG (2004) Evidence for a common pattern of peptidergic innervations of cnidocytes. Biol Bull 207:141–146CrossRefGoogle Scholar
  4. Arnellos A, Moreno A (2015) Integrating development and interaction in the transition from unicellular to multicellular organisms. In: Niklas K, Newman S (eds) The origins and consequences of multicellularity. MIT Press, Cambridge, MAGoogle Scholar
  5. Arnellos A, Spyrou T, Darzentas J (2010) Towards the naturalization of agency based on an interactivist account of autonomy. New Ideas Psychol 28(3):296–311CrossRefGoogle Scholar
  6. Arnellos A, Moreno A, Ruiz-Mirazo K (2014) Organizational requirements for multicellular autonomy: insights from a comparative case study. Biol Philos 29(6):851–884CrossRefGoogle Scholar
  7. Barandiaran X, Moreno A (2008a) Adaptivity: from metabolism to behavior. Adapt Behav 16(5):325–344CrossRefGoogle Scholar
  8. Barandiaran X, Moreno A (2008b) On the nature of neural information: a critique of the received view 50 years later. Neurocomputing 71(4–6):681–692CrossRefGoogle Scholar
  9. Barandiaran X, Di Paolo E, Rohde M (2009) Defining agency: individuality, normativity, asymmetry and spatio-temporality in action. Adapt Behav 17(5):367–386CrossRefGoogle Scholar
  10. Bechtel W (2007) Biological mechanisms: organized to maintain autonomy. In: Boogerd F, Bruggeman F, Hofmeyr JH, Westerhoff HV (eds) Systems biology. Philosophical foundations, Elsevier, Amsterdam, pp 269–302CrossRefGoogle Scholar
  11. Bell G, Mooers AO (1997) Size and complexity among multicellular organisms. Biol J Linn Soc 60:345–363CrossRefGoogle Scholar
  12. Berleman J, Kirby J (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33(5):942–957CrossRefGoogle Scholar
  13. Berleman JE, Chumley T, Cheung P, Kirby JR (2006) Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol 188:5888–5895CrossRefGoogle Scholar
  14. Bich L, Mossio M, Ruiz-Mirazo K, Moreno A (submitted) Biological regulation: controlling the system from withinGoogle Scholar
  15. Bickhard MH (2004) The dynamic emergence of representation. In: Clapin H, Staines P, Slezak P (eds) Representation in mind: new approaches to mental representation. Elsevier, Amsterdam, pp 71–90CrossRefGoogle Scholar
  16. Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284CrossRefGoogle Scholar
  17. Burge T (2009) Primitive agency and natural norms. Res 79:251–278Google Scholar
  18. Burton PM (2008) Insights from diploblasts: the evolution of mesoderm and muscle. J Exp Zool B Mol Dev Evol 310:5–14CrossRefGoogle Scholar
  19. Cereijido M, Contreras RG, Shoshani L (2004) Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol Rev 84:1229–1262CrossRefGoogle Scholar
  20. Chamovitz D (2012) What a plant knows: a field guide to the senses. Scientific American/Farrar, Straus and Giroux, USGoogle Scholar
  21. Christensen W (2007) The evolutionary origins of volition. In: Ross D, Spurrett D, Kincaid H, Stephens L (eds) Distributed cognition and the will: individual volition and social context. MIT Press, Cambridge, pp 255–287Google Scholar
  22. Christensen WD, Hooker CA (2002) Self-directed agents. In: MacIntosh J (ed) Naturalism Evolution & Intentionality, Canadian Journal of Philosophy, Special Supplementary, vol. 27, pp 19–52Google Scholar
  23. Di Paolo EA (2005) Autopoiesis, adaptivity, teleology, agency. Phenomenol Cogn Sci 4(4):429–452CrossRefGoogle Scholar
  24. Dretske F (1988) Explaining behavior: reasons in a world of causes. The MIT Press, CambridgeGoogle Scholar
  25. Ellison AM (2006) Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol 8(6):740–747CrossRefGoogle Scholar
  26. Emmeche C (2000) From robotics and cybernetic vehicles to autonomous systems; the organism lost and found? Commun Cogn Artif Intell 17(3–4):159–187Google Scholar
  27. Frankfurt HG (1978) The problem of action. Am Philos Q 15(2):157–162Google Scholar
  28. Fujisawa T (2008) Hydra peptide project 1993–2007. Dev Growth Differ 50(Suppl 1):S257–S268CrossRefGoogle Scholar
  29. Galliot B, Quiquand M, Ghila L, de Rosa R, Miljkovic-Licina M, Chera S (2009) Origins of neurogenesis, a cnidarian view. Dev Biol 332:2–24CrossRefGoogle Scholar
  30. Garzón PC, Keijzer F (2011) Plants: adaptive behavior, root-brains, and minimal cognition. Adapt Behav 19(3):155–171CrossRefGoogle Scholar
  31. Hartenstein V (2006) The neuroendocrine system in invertebrates: a developmental and evolutionary perspective. Endocrinology 190:555–570CrossRefGoogle Scholar
  32. Hill BS, Findlay GP (1981) The power of movement in plants: the role of osmotic machines. Q Rev Biophys 14:173–222CrossRefGoogle Scholar
  33. Hodick D, Sievers A (1988) The action potential of Dionaea muscipula ellis. Planta 174(1):8–18CrossRefGoogle Scholar
  34. Hutchings MJ, de Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238CrossRefGoogle Scholar
  35. Jacobs DK, Nakanishi N, Yuan D, Camara A, Nichols SA, Hartenstein V (2007) Evolution of sensory structures in basal metazoa. Integr Comp Biol 47:712–723Google Scholar
  36. Juarrero A (1999) Dynamics in action: intentional behavior as a complex system. MIT Press, CambridgeGoogle Scholar
  37. Kaiser D (2001) Building a multicellular organism. Annu Rev Genet 35:103–123CrossRefGoogle Scholar
  38. Kaiser D, Warrick H (2014) Transmission of a signal that synchronizes cell movements in swarms of Myxococcus xanthus. Proc Natl Acad Sci 111(34):11576–11577Google Scholar
  39. Kass-Simon G, Pierobon P (2007) Cnidarian chemical neurotransmission, an updated overview. Comp Biochem Physiol A: Mol Integr Physiol 146:9–25CrossRefGoogle Scholar
  40. Katsukura Y, Ando H, David CN, Grimmelikhuijzen CJ, Sugiyama T (2004) Control of planula migration by LWamide and RFamide neuropeptides in Hydractinia echinata. J Exp Biol 207:1803–1810CrossRefGoogle Scholar
  41. Kauffman S (2000) Investigations. Oxford University Press, OxfordGoogle Scholar
  42. Keijzer F (2015) Moving and sensing without input and output: early nervous systems and the origins of the animal sensorimotor organization. Biol Philos. doi: 10.1007/s10539-015-9483-1
  43. Keijzer F, van Duijn M, Lyon P (2013) What nervous systems do: early evolution, input-output, and the skin brain thesis. Adapt Behav 21(2):67–85CrossRefGoogle Scholar
  44. Kirk DL (2005) A twelve-step program for evolving multicellularity and a division of labor. BioEssays 27:299–310CrossRefGoogle Scholar
  45. Koizumi O (2002) Developmental neurobiology of hydra, a model animal of cnidarians. Can J Zool 80:1678–1689CrossRefGoogle Scholar
  46. Koufopanou V, Bell G (1993) Soma and germ: an experimental approach using Volvox. Proc R Soc Lond Ser B Biol Sci 254:107–113CrossRefGoogle Scholar
  47. Leys SP, Meech RW (2006) Physiology of coordination in sponges. Can J Zool 84:288–306CrossRefGoogle Scholar
  48. Leyser O (2011) Auxin, self-organisation, and the colonial nature of plants. Curr Biol 21:R331–R337CrossRefGoogle Scholar
  49. Mackie GO (1970) Neuroid conduction and the evolution of conducting tissues. Q Rev Biol 45:319–332CrossRefGoogle Scholar
  50. Mackie GO (1990) The elementary nervous system revisited. Am Zool 30(4):907–920Google Scholar
  51. Mackie GO (2004) Central neural circuitry in jellyfish Aglantha. Neurosignals 13:5–19CrossRefGoogle Scholar
  52. Maldonado M, Durfort M, McCarthy DA, Young CM (2003) The cellular basis of photobehavior in the tufted parenchymella larva of demosponges. Mar Biol 143:427–441CrossRefGoogle Scholar
  53. Marlow H, Tosches MA, Tomer R, Steinmetz PR, Lauri A, Larsson T, Arendt D (2014) Larval body patterning and apical organs are conserved in animal evolution. BMC Biol 12:7CrossRefGoogle Scholar
  54. Mauriello EM, Zusman DR (2007) Polarity of motility systems in Myxococcus xanthus. Curr Opin Microbiol 10:624–629CrossRefGoogle Scholar
  55. Millikan R (1993) White queen psychology, and other essays for Alice. MIT Press, CambridgeGoogle Scholar
  56. Moreno A, Etxeberria A (2005) Agency in natural and artificial systems. Artif Life 11(1–2):161–176CrossRefGoogle Scholar
  57. Moreno A, Lasa A (2003) From basic adaptivity to early mind. Evol Cogn 9(1):12–30Google Scholar
  58. Moreno A, Mossio M (2015) Biological autonomy. A philosophical and theoretical enquiry. Springer, DordrechtGoogle Scholar
  59. Moreno A, Etxeberria A, Umerez J (2008) The autonomy of biological individuals and artificial models. BioSystems 91:309–319CrossRefGoogle Scholar
  60. Nakanishi N, Yuan D, Jacobs DK, Hartenstein V (2008) Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa). Dev Genes Evol 218:511–524CrossRefGoogle Scholar
  61. Nickel M (2010) Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera? Invertebr Biol 129:1–16CrossRefGoogle Scholar
  62. O’Reagan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24(5):939–1031CrossRefGoogle Scholar
  63. Oborny B (2003) External and internal control in plant development. Complexity 9(3):22–28CrossRefGoogle Scholar
  64. Piraino S, Zega G, Di Benedetto C, Leone A, Dell’anna A, Pennati R, Candia Carnevali D, Schmid V, Reichert H (2011) Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria). J Comp Neurol 519:1931–1951CrossRefGoogle Scholar
  65. Plickert G, Schetter E, Verhey-Van-Wijk N, Schlossherr J, Steinbuchel M, Gajewski M (2003) The role of alpha-amidated neuropeptides in hydroid development—LWamides and metamorphosis in Hydractinia echinata. Int J Dev Biol 47:439–450Google Scholar
  66. Prescott TJ (2007) Forced moves or good tricks in design space? Landmark on the evolution of action selection. Adapt Behav 15(1):9–31CrossRefGoogle Scholar
  67. Rosslenbroich B (2009) The theory of increasing autonomy in evolution: a proposal for understanding macroevolutionary innovations. Biol Philos 24(5):623–644CrossRefGoogle Scholar
  68. Ruiz-Mirazo K, Moreno A (2011) Autonomy in evolution: from minimal to complex life. Synthese 185(1):21–52CrossRefGoogle Scholar
  69. Sachs T, Novoplansky A, Cohen D (1993) Plants as competing populations of redundant organs. Plant Cell Env 16:765–770CrossRefGoogle Scholar
  70. Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative story. Can J Zool 80(10):1654–1669CrossRefGoogle Scholar
  71. Satterlie RA (2008) Control of swimming in the hydrozoan jellyfish Aequorea victoria: subumbrellar organization and local inhibition. J Exp Biol 211:3467–3477CrossRefGoogle Scholar
  72. Satterlie RA (2011) Do jellyfish have central nervous systems? J Exp Biol 214:1215–1223. doi: 10.1242/jeb.043687 CrossRefGoogle Scholar
  73. Schaller HC, Hermans-Borgmeyer IRM, Hoffmeister SA (1996) Neural control of development in hydra. Int J Dev Biol 40:339–344Google Scholar
  74. Shani I (2012) Setting the bar for cognitive agency: or how minimally autonomous can an autonomous agent be? New Ideas Psychol 31(2):151–165CrossRefGoogle Scholar
  75. Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104CrossRefGoogle Scholar
  76. Skewes J, Hooker C (2009) Bio-agency and the problem of action. Biol Philos 24(3):283–300CrossRefGoogle Scholar
  77. Solari C, Ganguly S, Kessler JO, Michod RE, Goldstein RE (2006) Multicellularity and the functional interdependence of motility and molecular transport. PNAS 103(5):1353–1358CrossRefGoogle Scholar
  78. Sumpter DJT (2010) Collective animal behavior. Princeton Univ Press, PrincetonCrossRefGoogle Scholar
  79. Takeda N, Nakajima Y, Koizumi O, Fujisawa T, Takahashi T, Matsumoto M, Deguch R (2013) Neuropeptides trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. Mol Reprod Dev 80:223–232CrossRefGoogle Scholar
  80. Trewavas AJ (2005) Plant intelligence. Naturwissenschaften 92:401–413CrossRefGoogle Scholar
  81. Tyler S (2003) Epithelium—the primary building block for metazoan complexity. Integr Comp Biol 43(1):55–63CrossRefGoogle Scholar
  82. Ueki N, Matsunaga S, Inouye I, Hallmann A (2010) How 5000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox. BMC Biol 8:103CrossRefGoogle Scholar
  83. Van Duijn M, Keijzer F, Franjen D (2006) Principles of minimal cognition: casting cognition as sensorimotor coordination. Adapt Behav 14(2):157–170CrossRefGoogle Scholar
  84. Varela FJ, Thompson E, Rosch E (1991) The embodied mind: cognitive science and human experience. The MIT Press, CambridgeGoogle Scholar
  85. Volkov AG, Adesina T, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–145CrossRefGoogle Scholar
  86. Voronezhskaya EE, Khabarova MY (2003) Function of the apical sensory organ in the development of invertebrates. Dokl Biol Sci 390:231–234CrossRefGoogle Scholar
  87. Williams SE, Bennet AB (1982) Leaf closure in the Venus flytrap: an acid growth response. Science 218:1120–1122CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.The KLI InstituteKlosterneuburgAustria
  2. 2.IAS-Research Centre for Life, Mind and Society, Department of Logic and Philosophy of ScienceUniversity of the Basque CountryDonostia, San SebastiánSpain

Personalised recommendations