Biology & Philosophy

, Volume 28, Issue 2, pp 351–378 | Cite as

Microbial neopleomorphism

  • W. Ford Doolittle


Our understanding of what microbes are and how they evolve has undergone many radical shifts since the late nineteenth century, when many still believed that bacteria could be spontaneously generated and most thought microbial “species” (if any) to be unstable and interchangeable in form and function (pleomorphic). By the late twentieth century, an ontology based on single cells and definable species with predictable properties, evolving like species of animals or plants, was widely accepted. Now, however, genomic and metagenomic data show that lateral gene transfer compromises this picture of stability and predictability, and refocuses our attention on multilineage communities. Treating such communities as unstable but identifiable evolving “individuals” makes us again pleomorphists, of a sort.


Evolution Microbiology Pleomorphism Metagenomics Lateral gene transfer 


  1. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  2. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180CrossRefGoogle Scholar
  3. Bapteste E, O’Malley MA, Beiko RG, Ersheshesfky M, Gogarten JP, Franklin-Hall L, Lapointe FJ, Dupré J, Boucher Y, Martin W (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34CrossRefGoogle Scholar
  4. Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345CrossRefGoogle Scholar
  5. Baskett AC, Hinshelwood C (1951) The mechanism of training of Bact. Lactis aerogenes to D-arabinose. Proc R Soc Lond B Biol Sci 139:58–73CrossRefGoogle Scholar
  6. Boenigk J, Ereshefsky M, Hoef-Emden K, Mallet J, Bass D (2012) Concepts in protistology: species definitions and boundaries. Eur J Protistol 48:96–102CrossRefGoogle Scholar
  7. Borenstein E. (2012). Computational systems biology and in silico modeling of the human microbiome. Brief Bioinform May 15, 2012. epub ahead of printGoogle Scholar
  8. Bouchard F (2011) Darwinism without populations: a more inclusive understanding of the “Survival of the Fittest”. Stud Hist Philos Biol Biomed Sci 42:106–114Google Scholar
  9. Brock TD (1990) The Emergence of Bacterial Genetics. Cold Spring Harbor Laboratory PressGoogle Scholar
  10. Buckley MR (2004) The Global Genome Question: Microbes as the Key to Understanding Evolution and Ecology. ASM Press, Washington DCGoogle Scholar
  11. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 108:14288–14293CrossRefGoogle Scholar
  12. Cairns J, Overbaugh J, Miller S (1988) The origin of mutants. Nature 335:142–145CrossRefGoogle Scholar
  13. Caro-Quintero A, Konstantinidis KT (2012) Bacteria species may exist, metagenomics reveal. Environ Microbiol 14:347–355CrossRefGoogle Scholar
  14. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287CrossRefGoogle Scholar
  15. Cohan FM (2006) Towards a conceptual and operational union of bacterial systematics, ecology and evolution. Philos Trans R Soc Lond B Biol Sci 361:1985–1986CrossRefGoogle Scholar
  16. Coley JD, Medin DL, Atran S (1997) Does rank have its privilege? Inductive inferences within folkbiological taxonomy. Cognition 64:73–112CrossRefGoogle Scholar
  17. Cook LM (2003) The rise and fall of the Carbonaria form of the peppered moth. Q Rev Biol 78:399–417CrossRefGoogle Scholar
  18. Cook L, Chatterjee A, Barnes A, Yarwood J, Hu W-S, Dunny G (2011) Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol Microbiol 81:1499–1510CrossRefGoogle Scholar
  19. Costello EK, Stagaman K, Dethlefson L, Bohannan BJM, Relman DA (2012) The application of ecological theory toward an understanding of the microbiome. Science 336:1255–1262CrossRefGoogle Scholar
  20. Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163Google Scholar
  21. Dagan T, Martin W (2006) The tree of one percent. Genome Biol 7:118CrossRefGoogle Scholar
  22. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–632CrossRefGoogle Scholar
  23. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129CrossRefGoogle Scholar
  24. Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA 104:2043–2049CrossRefGoogle Scholar
  25. Doolittle WF, Brown JR (1994) Tempo, mode, the progenote and the universal root. Proc Natl Acad Sci USA 91:6721–6728CrossRefGoogle Scholar
  26. Doolittle WF, Zhaxybayeva O (2009) On the origin of prokaryotic species. Genome Res 19:744–756CrossRefGoogle Scholar
  27. Dupre J (1999) On the Impossibility of a Monistic Account of Species, in Wilson RA (ed) Species: New Interdisciplinary Essays, Cambridge University Press, pp 3–20Google Scholar
  28. Dykhuizen DE, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268Google Scholar
  29. Ehrlich GD, Ahmed A, Earl J, Hiller NL, Costerton JW et al (2010) The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious Processes. FEMS Immunol Med Microbiol 59:269–279Google Scholar
  30. Ersehsfsky M, Pedroso M. (2012). Biological individuality: the case of biofilms. Biology and Philosophy in pressGoogle Scholar
  31. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746CrossRefGoogle Scholar
  32. Garrity GM, Holt JG (2001) The Road Map to the Manual. In Boone DR, Castenholz RW, Garrity GM (eds), Bergey’s Manual of Systematic Bacteriology, second edition, vol. 1 (The Archaea and the Deeply Branching and Phototrophic Bacteria), Springer, New York, 2001, pp 119–166Google Scholar
  33. Giovannoni SJ, Britschgi TB, Moyer CL, Field Kg (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63CrossRefGoogle Scholar
  34. Godfrey-Smith P (2009) Darwinian Populations and Natural Selection. Oxford University Press, OxfordGoogle Scholar
  35. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in the light of gene transfer. Mol Biol Evol 19:2226–2238CrossRefGoogle Scholar
  36. Hadley P (1927) Microbic dissociation: the instability of bacterial species with reference to active dissociation and transmissible autolysis. J Infect Dis 40:1–312CrossRefGoogle Scholar
  37. Hey J (2001) The mind of the species problem. Trends Ecol Evol 16:326–329CrossRefGoogle Scholar
  38. Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relmab DA et al (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e10000255CrossRefGoogle Scholar
  39. Huse SM, Mark Welch D, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1189–1898CrossRefGoogle Scholar
  40. Huxley JS (1942) Evolution: The Modern Synthesis. George Allen and Unwin, LondonGoogle Scholar
  41. Jacob F, Wollman EL (1961) Sexuality and the genetics of bacteria. Academic Press, New YorkGoogle Scholar
  42. Kahn SD (2011) On the future of genomic data. Science 331:728–729CrossRefGoogle Scholar
  43. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334CrossRefGoogle Scholar
  44. Koch R (1881) Zur Untersuchung von pathogenen Organismen. Mittheilungen aus dem Kaiserlichen Gesundheitsamte 1:1–48Google Scholar
  45. Kuczynski J, Costello EK, Nemergut DR, Zaneveld J, Lauber CL et al (2010) Direct sequencing of the human microbiome reveals community differences. Genome Biol 11:210CrossRefGoogle Scholar
  46. Lankester ER (1886) The pleomorphism of the Schizophyta. Nature 33:413–415CrossRefGoogle Scholar
  47. Larsen P, Hamada Y, Gilbert J (2012) Modeling microbial communities: current, developing and future technologies for predicting microbial community interaction. J Biotechnol 160:17–24CrossRefGoogle Scholar
  48. Lazarevic V, Whiteson K, Hernandez D, Francois P, Schrenzel J (2010) Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics 11:523CrossRefGoogle Scholar
  49. Lewis IM (1934) Bacterial variation with special reference to behavior of some mutabile strains of colon bacteria in synthetic media. J Bacteriol 26:619–639Google Scholar
  50. Lewontin R (1970) The units of selection. Annu Rev Ecol Sysyt 1:1–16CrossRefGoogle Scholar
  51. Little D (2011) “Philosophy of History”, The Stanford Encyclopedia of Philosophy (Summer 2011 Edition). In: Zalta EN (ed)
  52. Lozupone CA, Hamady M, Cantarel BI, Coutinho PM, Henrisset B et al (2008) The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci USA 105:15076–15081CrossRefGoogle Scholar
  53. Luria S, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511Google Scholar
  54. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65:183–185CrossRefGoogle Scholar
  55. Mallet J (2010) Why was Darwin’s view of species rejected by twentieth century biologists. Biol Philos 25:497–527CrossRefGoogle Scholar
  56. Mallett J (2008) Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Phil Trans R Soc Lond B Biol Sci 363:2871–2986CrossRefGoogle Scholar
  57. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nature 6:805–814Google Scholar
  58. McInerney JO, Pisani D, Bapteste E, O’Connell MJ (2011) The public goods hypothesis for the evolution of life on earth. Biol Direct 6:41CrossRefGoogle Scholar
  59. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilization of the biofilm structure. Curr Opin Biotechnol 14:255–261CrossRefGoogle Scholar
  60. Nelsen MP, Gargas A (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol 177:264–275Google Scholar
  61. Nemergut DR, Costello EH, Hamady M, Lozupone C, Jiang L et al (2011) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13:135–144CrossRefGoogle Scholar
  62. Noda S, Kitade O, Inoue T, Kawai M, Kanuka M et al (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp), their hosts, and their bacterial symbionts. Mol Ecol 16:1257–1266CrossRefGoogle Scholar
  63. O’Hara RJ (1997) Population thinking and tree thinking in systematics. Zool Scripta 26:323–329CrossRefGoogle Scholar
  64. O’Malley MA (2009) What did Darwin have to say about microbes, and how did microbiology respond? Trends Microbiol 17:341–347CrossRefGoogle Scholar
  65. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740CrossRefGoogle Scholar
  66. Pace NR, Sapp J, Goldenfeld N (2012) Phylogeny and beyond: scientific, historical and conceptual significance of the first tree of life. Proc Natl Acad Sci USA 109:1011–1018CrossRefGoogle Scholar
  67. Penn M, Dworkin M (1976) Robert Koch and two visions of microbiology. Bacteriol Rev 40:276–283Google Scholar
  68. Puigbò P, Wolf YI, Koonin EV (2010) The tree and net components of prokaryote evolution. Genome Biol Evol 2:745–756CrossRefGoogle Scholar
  69. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefGoogle Scholar
  70. Redfield RJ (2001) Do bacteria have sex? Nat Rev Genet 2:634–639CrossRefGoogle Scholar
  71. Reeder J, Knight R (2009) The ‘rare biosphere’: a reality check. Nat Methods 6:636–638CrossRefGoogle Scholar
  72. Rehbock PF (1975) Huxley, Haeckel, and the oceanographers: the case of Bathybius haeckelii. Isis 66:504–533CrossRefGoogle Scholar
  73. Reid A, Buckley M (2011) The rare biosphere. American Academy of Microbiology, Washington, DCGoogle Scholar
  74. Remis JP, Costerton JW, Auer M (2010) Biofilms: structure that may facilitate cell–cell interactions. ISME J 4:1085–1087CrossRefGoogle Scholar
  75. Rosenberg SM (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2:504–515CrossRefGoogle Scholar
  76. Sapp J (2009) The New Foundations of Evolution: On the Tree of Life. Oxford University Press, OxfordGoogle Scholar
  77. Shapiro JA (1988) Bacteria as multicellular organisms. Sci Am 258:82–89CrossRefGoogle Scholar
  78. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC et al (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51CrossRefGoogle Scholar
  79. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA et al (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244CrossRefGoogle Scholar
  80. Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710CrossRefGoogle Scholar
  81. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346CrossRefGoogle Scholar
  82. Strick JE (2000) Sparks of life: darwinism and the victorian debate over spontaneous generation. Harvard University Press, Cambridge MAGoogle Scholar
  83. Strick JE (2008) Spontaneous Generation. In: Lederberg Joshua (ed) Encyclopedia of Microbiology, 3rd edn. Academic Press, New YorkGoogle Scholar
  84. Strick JE (2009) Darwin and the origin of life: public versus private science. Endeavour 33:147–150CrossRefGoogle Scholar
  85. Summers WC (1991) From culture as organism to organism as cell: historical origins of bacterial genetics. J Hist Biol 24:171–190CrossRefGoogle Scholar
  86. Theunissen B (1996) The beginnings of the Delft Tradition revisited: Martinius W. Beijerinck and the genetics of microorganisms. J Hist Biol 29:197–228CrossRefGoogle Scholar
  87. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557CrossRefGoogle Scholar
  88. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefGoogle Scholar
  89. van Niel CB (1955) Classification and taxonomy of the bacteria and blue-green algae, p. 89–114. In: A Century of Progress in the Natural Sciences. California Academy of Sciences, San FranciscoGoogle Scholar
  90. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309:1–7Google Scholar
  91. Wainwright M (1997) Extreme pleomorphism and the bacterial life cycle: a forgotten controversy. Pers Biol Med 40:407–414Google Scholar
  92. Wilkins JS (2009) Species: a Histoty of the Idea. University of California Press, Berkeley CAGoogle Scholar
  93. Wojciechowski F, Leumann CJ (2012) Alternative DNA base-pairs; from efforts to expand the code to potential material applications. Chem Soc Rev 40:5669–5679CrossRefGoogle Scholar
  94. Zachar I, Szathmary E (2010) A new replicator: a theoretical framework for analysing replication. BMC Biol 8:21Google Scholar
  95. Zengler K, Palsson BO (2012) A road map for the development of community systems biology. Nat Rev Microbiol 10:366–372Google Scholar
  96. Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP (2009a) Intertwined evolutionary histories of marine Synechococcus and Prochlorcoccus marinus. Genome Biol Evol 1:325–339CrossRefGoogle Scholar
  97. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM et al (2009b) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 106:5865–5870CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dalhousie UniversityHalifaxCanada

Personalised recommendations