Biology & Philosophy

, Volume 27, Issue 1, pp 29–48 | Cite as

Technological biology? Things and kinds in synthetic biology

  • Pablo SchyfterEmail author


Social scientific and humanistic research on synthetic biology has focused quite narrowly on questions of epistemology and ELSI. I suggest that to understand this discipline in its full scope, researchers must turn to the objects of the field—synthetic biological artifacts—and study them as the objects in the making of a science yet to be made. I consider one fundamentally important question: how should we understand the material products of synthetic biology? Practitioners in the field, employing a consistent technological optic in the study and construction of biological systems, routinely employ the mantra ‘biology is technology’. I explore this categorization. By employing an established definition of technological artifects drawn from the philosophy of technology, I explore the appropriateness of attributing to synthetic biological artifacts the four criteria of materiality, intentional design, functionality, and normativity. I then explore a variety of accounts of natural kinds. I demonstrate that synthetic biological artifacts fit each kind imperfectly, and display a concomitant ontological ‘messiness’. I argue that this classificatory ambivalence is a product of the field’s own nascence, and posit that further work on kinds might help synthetic biology evaluate its existing commitments and practices.


Synthetic biology Biological engineering Technological artifacts Natural kinds Ontology Classification Philosophy of technology 


  1. Ajo-Franklin CM, Drubin DA, Eskin JA, Gee E, Landgraf D, Phillips I, Silver PA (2007) Rational design of memory in eukaryotic cells. Genes Dev 21:2271–2276CrossRefGoogle Scholar
  2. Allen C, Bekoff M, Lauder GV (eds) (1998) Nature’s purposes. The MIT Press, CambridgeGoogle Scholar
  3. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:0028CrossRefGoogle Scholar
  4. Ariew A, Cummins R, Perlman M (eds) (2002) Functions. Oxford UP, OxfordGoogle Scholar
  5. Arkin A (2008) Setting the standard in synthetic biology. Nat Biotechnol 26(7):771–774CrossRefGoogle Scholar
  6. Arkin A et al (2009) Synthetic biology: what’s in a name? Nat Biotechnol 27(12):1071–1073CrossRefGoogle Scholar
  7. Ball P (2007) Designs for life. Nature 448:32–33CrossRefGoogle Scholar
  8. Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:533–543CrossRefGoogle Scholar
  9. Boyd R (1991) Realism, anti-foundationalism and the enthusiasm for natural kinds. Philos Stud 61:127–148CrossRefGoogle Scholar
  10. Boyd R (1999) Kinds, complexity and multiple realization. Philos Stud 95:67–98CrossRefGoogle Scholar
  11. Brigandt I (2009) Natural kinds in evolution and systematics. Acta Biotheor 57:77–97CrossRefGoogle Scholar
  12. Buller DJ (ed) (1999) Function, selection, and design. SUNY Press, AlbanyGoogle Scholar
  13. Burrill DR, Silver PA (2010) Making cellular memories. Cell 140(1):13–18CrossRefGoogle Scholar
  14. Canton B, Labno A (2004) BBa_F2620. Registry of standard biological parts, MIT. Accessed 17 Mar 2010
  15. Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793CrossRefGoogle Scholar
  16. Cummins R (1975) Functional analysis. J Philos 72(20):741–765CrossRefGoogle Scholar
  17. Dancy J (2006) The thing to use. Stud Hist Philos Sci A 37:58–61CrossRefGoogle Scholar
  18. De Sousa R (1984) The natural shiftiness of natural kinds. Can J Philos 14(4):561–580Google Scholar
  19. Dougherty MJ, Arnold FH (2009) Directed evolution: new parts and optimized function. Curr Opin Biotechnol 20(4):486–491CrossRefGoogle Scholar
  20. Dupré J (1981) Natural kinds and biological taxa. Philos Rev 90(1):66–90CrossRefGoogle Scholar
  21. Dupré J (1993) The disorder of things. Harvard UP, CambridgeGoogle Scholar
  22. Dupré J (2001) In defence of classification. Stud Hist Philos Sci C 32(2):203–219CrossRefGoogle Scholar
  23. Dupré J, O’Malley MA (2009) Varieties of living things. Philos Theor Biol 1:003Google Scholar
  24. Elder CL (2007) On the place of artifacts in ontology. In: Margolis E, Laurence S (eds) Creations of the mind. Oxford UP, Oxford, pp 33–51Google Scholar
  25. Endy D (2005) Foundations for engineering biology. Nature 438(24):449–453CrossRefGoogle Scholar
  26. Forster AC, Church G (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2:0045CrossRefGoogle Scholar
  27. Franssen M (2006) The normativity of artefacts. Stud Hist Philos Sci A 37:42–57CrossRefGoogle Scholar
  28. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342CrossRefGoogle Scholar
  29. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103(2):425–430CrossRefGoogle Scholar
  30. Grandy RE (2007) Artifacts: parts and principles. In: Margolis E, Laurence S (eds) Creations of the mind. Oxford UP, Oxford, pp 18–32Google Scholar
  31. Hacking I (1991) A tradition of natural kinds. Philos Stud 61:109–126CrossRefGoogle Scholar
  32. Hansson SO (2006) Defining technical function. Stud Hist Philos Sci A 37:19–22CrossRefGoogle Scholar
  33. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52CrossRefGoogle Scholar
  34. Heinemann M, Panke S (2006) Synthetic biology: putting engineering into biology. Bioinformatics 22(22):2790–2799CrossRefGoogle Scholar
  35. Houkes W (2006) Knowledge of artefact functions. Stud Hist Philos Sci A 37:102–113CrossRefGoogle Scholar
  36. Keasling J, Vincent M, Pitera D, Kim S-W, Sydnor WT, Yasuo Y et al (2007) USPTO patent application 20070166782: Biosynthesis of isopentenyl pyrophosphateGoogle Scholar
  37. Keller EF (2008) Nature and the natural. BioSocieties 3:117–124CrossRefGoogle Scholar
  38. Keller R, Boyd R, Wheeler Q (2003) The illogical basis of phylogenetic nomenclature. Bot Rev 69(1):93–100CrossRefGoogle Scholar
  39. Kitcher P (1984) Species. Philos Sci 51(2):308–333CrossRefGoogle Scholar
  40. Kroes P, Meijers A (2006) The dual nature of technical artefacts. Stud Hist Philos Sci A 37:1–4CrossRefGoogle Scholar
  41. Krohs U, Kroes P (eds) (2009) Functions in biological artificial worlds. The MIT Press, CambridgeGoogle Scholar
  42. Kwok R (2010) Five hard truths for synthetic biology. Nature 463:288–290CrossRefGoogle Scholar
  43. Ladrière J (1998) The technical universe in an ontological perspective. Techné 4(1):66–91Google Scholar
  44. Lentzos F, Bennett G, Boeke J, Endy D, Rabinow P (2008) Roundtable on synthetic biology. BioSocieties 3:311–323CrossRefGoogle Scholar
  45. Millikan RG (1984) Language, thought, and other biological categories. The MIT Press, CambridgeGoogle Scholar
  46. Millikan RG (1999) Proper functions. In: Buller DJ (ed) Function, selection, and design. SUNY Press, Albany, pp 85–96Google Scholar
  47. O’Malley MA, Powell A, Davies JF, Calvert J (2007) Knowledge-making distinctions in synthetic biology. BioEssays 30(1):57–65CrossRefGoogle Scholar
  48. Preston B (2006) Social context and artefact function. Stud Hist Philos Sci A 37:37–41CrossRefGoogle Scholar
  49. Rasmussen S, Chen L, Deamer D, Krakauer D, Packard N, Stadler P, Bedau M (2004) Transitions from nonliving to living matter. Science 303:963–965CrossRefGoogle Scholar
  50. Sanders R (2010) NSF grant to launch world’s first open-source genetic parts production facility. Genet Eng Biotechnol, 20 JanuaryGoogle Scholar
  51. Sauro HM (2008) Modularity defined. Mol Syst Biol 4:66CrossRefGoogle Scholar
  52. Savage DF, Way J, Silver PA (2008) Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chem Biol 3(1):13–16CrossRefGoogle Scholar
  53. Scheele M (2006) Function and use of technical artefacts: social condition of function ascription. Stud Hist Philos Sci A 37:23–36CrossRefGoogle Scholar
  54. Schummer J (2001) Aristotle on technology and nature. Philos Nat 3:105–120CrossRefGoogle Scholar
  55. Schyfter P (2009) The bootstrapped artefact: a collectivist account of technological ontology, functions, and normativity. Stud Hist Philos Sci A 40(1):102–111CrossRefGoogle Scholar
  56. Specter M (2009) A life of its own. The New Yorker, 28 SeptemberGoogle Scholar
  57. Vermaas PE (2006) The physical connection: engineering function ascriptions to technical artefacts and their components. Stud Hist Philos Sci A 37:62–75CrossRefGoogle Scholar
  58. Vermaas PE, Houkes W (2006) Technical functions: a drawbridge between intentional and structural natures of technical artefacts. Stud Hist Philos Sci A 37:5–18CrossRefGoogle Scholar
  59. Walsh D (1996) Fitness and function. Brit J Philos Sci 47(4):553–574CrossRefGoogle Scholar
  60. Wilson RA (1996) Promiscuous realism. Brit J Phil Sci 47:303–316CrossRefGoogle Scholar
  61. Wilson RA (1999) Realism, essence, and kind. In: Wilson RA (ed) Species: new interdisciplinay essays. The MIT Press, Cambridge, pp 187–207Google Scholar
  62. Wright L (1973) Functions. Philos Rev 82:139–168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of BioengineeringStanford UniversityStanfordUSA
  2. 2.ESRC Centre for Social and Economic Research on Innovation in GenomicsUniversity of EdinburghEdinburghUK

Personalised recommendations