Biology & Philosophy

, Volume 26, Issue 4, pp 595–602 | Cite as

Are all genes regulatory genes?

  • Rosario Michael PiroEmail author


Although much has been learned about hereditary mechanisms since Gregor Mendel’s famous experiments, gene concepts have always remained vague, notwithstanding their central role in biology. During over hundred years of genetic research, gene concepts have often and dynamically changed to accommodate novel experimental findings, without ever providing a generally accepted definition of the ‘gene.’ Yet, the distinction between ‘regulatory genes’ and ‘structural genes’ has remained a common theme in modern gene concepts since the definition of the operon-model. This distinction is now challenged by recent findings which suggest that, at least in eukaryotes, structural genes may in many situations have a regulatory function that is independent of the function of the gene product (protein or non-coding RNA molecule). This brief paper discusses these new findings and some possible implications for the notion of the ‘regulatory gene.’


Gene concepts Regulatory genes MicroRNAs Pseudogenes Transcript function 



I would like to thank the anonymous reviewers for their considerations and suggestions that have helped in significantly improving the manuscript.


  1. Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363CrossRefGoogle Scholar
  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefGoogle Scholar
  3. Burian RM (2005) Too many kinds of genes? some problems posed by discontinuities in gene concepts and the continuity of the genetic material. In: The epistemology of development, genetics, and evolution. Cambridge University Press, New York, pp 166–178Google Scholar
  4. Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20:R858–R861CrossRefGoogle Scholar
  5. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726CrossRefGoogle Scholar
  6. Falk R (2000) The gene: a concept in tension. In: Beurton P, Falk R, Rheinberger HJ (eds) The concept of the gene in development and evolution. Cambridge University Press, Cambridge, pp 317–348CrossRefGoogle Scholar
  7. Forman JJ, Coller HA (2010) The code within the code: microRNAs target coding regions. Cell Cycle 9:1533–1541CrossRefGoogle Scholar
  8. Gatherer D (2010) So what do we really mean when we say that systems biology is holistic? BMC Syst Biol 4:22CrossRefGoogle Scholar
  9. Gifford F (2000) Gene concepts and genetic concepts. In: Beurton P, Falk R, Rheinberger HJ (eds) The concept of the gene in development and evolution. Cambridge University Press, Cambridge, pp 40–66CrossRefGoogle Scholar
  10. Gilbert W, Müller-Hill B (1966) Isolation of the lac repressor. Proc Natl Acad Sci USA 56:1891–1898CrossRefGoogle Scholar
  11. Griffiths PE, Stotz K (2007) Gene. In: Hull DL, Ruse M (eds) The Cambridge companion to the philosophy of biology. Cambridge University Press, New York, pp 85–102Google Scholar
  12. Gu S, Jin L, Zhang F, Sarnow P, Kay MA (2009) Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16:144–150CrossRefGoogle Scholar
  13. Guang S, Bochner AF, Burkhart KB, Burton N, Pavelec DM, Kennedy S (2010) Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465:1097–1101CrossRefGoogle Scholar
  14. Harrison PM, Zheng D, Zhang Z, Carriero N, Gerstein M (2005) Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 33:2374–2383CrossRefGoogle Scholar
  15. Hine, RS, Martin, E (eds) (2004) Oxford dictionary of biology, 5th edn. Oxford University Press, OxfordGoogle Scholar
  16. Hoffer P, Ivashuta S, Pontes O, Vitins A, Pikaard C, Mroczka A, Wagner N, Voelker T (2011) Posttranscriptional gene silencing in nuclei. Proc Natl Acad Sci USA 108:409–414CrossRefGoogle Scholar
  17. Jacob F, Monod J (1959) Gènes de structure et gènes de régulation dans la biosynthèse des protéines. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sci 249:1282–1284Google Scholar
  18. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3(3):318–356CrossRefGoogle Scholar
  19. Jacob F, Perrin D, Sanchez C, Monod J (1960) L’opéron: groupe de gènes à expression coordonnée par un opérateur. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sci 250:1727–1729Google Scholar
  20. Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35:368–376CrossRefGoogle Scholar
  21. Keller EF (2000) The century of the gene. Harvard University Press, CambridgeGoogle Scholar
  22. Keller EF, Harel D (2007) Beyond the gene. PLoS ONE 2(11):e1231CrossRefGoogle Scholar
  23. Moss L (2003) What genes can’t do. MIT Press, CambridgeGoogle Scholar
  24. Pardee A, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by e. coli. J Mol Biol 1:165–178CrossRefGoogle Scholar
  25. Peter IS, Davidson EH (2009) Modularity and design principles in the sea urchin embryo gene regulatory network. FEBS Lett 583:3948–3958CrossRefGoogle Scholar
  26. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038CrossRefGoogle Scholar
  27. Portin P (2009) The elusive concept of the gene. Hereditas 146:112–117CrossRefGoogle Scholar
  28. Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38:S8–S13CrossRefGoogle Scholar
  29. Rheinberger HJ, Müller-Wille S (2009) Gene. In: Zalta E (ed) Stanford encyclopedia of philosophy, Spring 2009 Edition (revised from the Winter 2004 Edition)Google Scholar
  30. Selbach M, Schwanhusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63CrossRefGoogle Scholar
  31. Tang G (2008) siRNA and miRNA: an insight into RISCs. Nature 455:58–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Molecular Biotechnology Center and Department of Genetics, Biology and BiochemistryUniversity of TorinoTurinItaly
  2. 2.Department of Theoretical BioinformaticsGerman Cancer Research Center (Deutsches Krebsforschungszentrum)HeidelbergGermany

Personalised recommendations