Biology & Philosophy

, Volume 25, Issue 4, pp 603–621 | Cite as

Evaluating Maclaurin and Sterelny’s conception of biodiversity in cases of frequent, promiscuous lateral gene transfer

  • Gregory J. MorganEmail author


The recent conception of biodiversity proposed by James Maclaurin and Sterelny was developed mostly with macrobiological life in mind. They suggest that we measure biodiversity by dividing life into natural units (typically species) and quantifying the differences among units using phenetic rather than phylogenetic measures of distance. They identify problems in implementing quantitative phylogenetic notions of difference for non-prokaryotic species. I suggest that if we focus on microbiological life forms that engage in frequent, promiscuous lateral gene transfer (LGT), and their associated reticulated phylogenies, we need to rethink the notion of species as the natural unit, and we discover additional problems with phylogenetic notions of distance. These problems suggest that a phenetic approach based on morphospaces has just as much appeal, if not more, for microbes as they do for multi-cellular life. Facts about LGT, however, offer no new insight into the additional challenge of reconciling units and differences into a single measure of biodiversity.


Biodiversity Microbial species Modi Ecotype Networks Non-hierarchical classification Lateral gene Transfer Morphospace 



I thank the audience at the Halifax meeting of Perspectives on the Tree of Life, sponsored by the Leverhulme Trust, for feedback and advice. Suggestions from David Silverstein, Donavan Parks, Rob Beiko, Ford Doolittle, Jeffrey Lawrence, Maureen O’Malley and two anonymous reviewers significantly improved the paper. I also thank Jeffrey Lawrence for the unpublished distance data that allowed the network in Fig. 5 to be calculated and Na-Young Kim for creating Figs. 3, 4 and 6.


  1. Achenbach LA, Coates JD (2000) Disparity between bacterial phylogeny and physiology. ASM News 66:714–715Google Scholar
  2. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440Google Scholar
  3. Allison M (2006) Star clusters and how to observe them. Springer-Verlag, LondonGoogle Scholar
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  5. Bapteste E, Boucher Y (2008) Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 16:200–207CrossRefGoogle Scholar
  6. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–D30. doi: 10.1093/nar/gkm929PMID18073190 CrossRefGoogle Scholar
  7. Berman HM (2008) The protein data bank: a historical perspective. Acta Crystallogr A A64(1):88–95. doi: 10.1107/s0108767307035623 CrossRefGoogle Scholar
  8. Brun Y, Shimkets LJ (2000) Prokaryotic development. ASM Press, Washington, DCGoogle Scholar
  9. Caspar DLD (1964) Structure and function of regular virus particles. In: Corbett MK, Sisler AD (eds) Plant virology. University of Florida Press, Gainesville, pp 267–291Google Scholar
  10. Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Sym XXVII:1–24Google Scholar
  11. Cohan FM (1994) Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol 9:175–180CrossRefGoogle Scholar
  12. Cohan FM (2001) Bacterial species and speciation. Syst Biol 50:513–524CrossRefGoogle Scholar
  13. Cohan FM (2002) What are bacterial species? Annu Rev of Microbiol 56:457–487CrossRefGoogle Scholar
  14. Colwell RR (1997) Microbial diversity: the importance of exploration and conservation. J Ind Microbiol Biot 18:302–307CrossRefGoogle Scholar
  15. Doolittle FW (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128CrossRefGoogle Scholar
  16. Doolittle FW, Papke RT (2006) Genomics and the bacterial species problem. Genome Biol 7:116CrossRefGoogle Scholar
  17. Dupré J, O’Malley MA (2007) Metagenomics and biological ontology. Stud Hist Philos Sci C 38:834–846Google Scholar
  18. Dykhuizen DE, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268Google Scholar
  19. Eisen JA (2007) Environmental shotgun sequencing: it’s potential and challenges for studying the hidden world of microbes. PLoS Biol 5(3):e82. doi: 10.1371/journal.pbio.0050082 CrossRefGoogle Scholar
  20. Ereshefsky M (2010) Microbiology and the species problem. Biol Philos (this issue). doi: 10.1007/s10539-010-9211-9
  21. Faith D (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  22. Faith D (1994) Phylogenetic pattern and the quantification of organismal biodiversity. Philos T R Soc B 345:45–58CrossRefGoogle Scholar
  23. Feil EJ, Maiden MC, Achtman M, Spratt BG (1999) The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitides. Mol Biol Evol 16:1496–1502Google Scholar
  24. Feil EJ, Holmes EC, Bessen DE, Chan M, Day NPJ, Enright MC, Goldstein R, Hood DW, Kalia A, Moore CE, Zhou J, Spratt BG (2001) Recombination within natural populations of pathogenic bacteria: Short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci USA 98:182–187CrossRefGoogle Scholar
  25. Franklin LR (2007) Bacteria, sex and systematics. Philos Sci 74:69–95CrossRefGoogle Scholar
  26. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238Google Scholar
  27. Hendrix RW (2005) Bacteriophage HK97: assembly of the capsid and evolutionary connections. Adv Virus Res 64:1–14CrossRefGoogle Scholar
  28. Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 96:2192–2197CrossRefGoogle Scholar
  29. Howe MA (1987) Phage Mu: An overview. In: Symonds N, Toussaint A, van de Putte P, Howe MM (eds) Phage Mu. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY, pp 25–39Google Scholar
  30. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microb 67:4399–4406CrossRefGoogle Scholar
  31. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefGoogle Scholar
  32. Koonin EV, Kira S, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742CrossRefGoogle Scholar
  33. Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100:9658–9662CrossRefGoogle Scholar
  34. Lawrence JG, Retchless A (2010) The myth of bacterial species and speciation. Biol Philos (this issue). doi: 10.1007/s10539-010-9215-5
  35. Lawrence JG, Hatfull GF, Hendrix RW (2002) Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 184(17):4891–4905CrossRefGoogle Scholar
  36. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522Google Scholar
  37. Maclaurin J, Sterelny K (2008) What is biodiversity? University of Chicago Press, ChicagoGoogle Scholar
  38. Morgan GJ (2003) Historical review: viruses, crystals and geodesic domes. Trends Biochem Sci 28:86–91CrossRefGoogle Scholar
  39. Morgan GJ (2004) Early theories of virus structure. In: Cheng H, Hammar L (eds) Conformational proteomics of macromolecular architectures. World Scientific, Singapore, pp 3–40CrossRefGoogle Scholar
  40. Morgan GJ (2006) Virus design, 1955–1962: science meets art. Phytopathology 96:1287–1291CrossRefGoogle Scholar
  41. Morgan GJ (2007) Prioritizing the transformative value of biodiversity. Biol Philos 22:627–632CrossRefGoogle Scholar
  42. Morgan GJ (2009) The many dimensions of biodiversity. Stud Hist Philos Sci C 40:235–238Google Scholar
  43. Morgan GJ, Pitts WB (2008) Evolution without species: the case of mosaic bacteriophages. Brit J Philos Sci 59:745–765CrossRefGoogle Scholar
  44. Morgan GJ, Hatfull GF, Casjens S, Hendrix RW (2002) Bacteriophage Mu genome sequence: analysis and comparison with mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 317:337–359CrossRefGoogle Scholar
  45. O’Malley MA (2010) Ernst Mayr, the tree of life, and philosophy of biology. Biol Philos (this issue). doi: 10.1007/s10539-010-9214-6
  46. O’Malley MA, Dupré J (2007) Size doesn’t matter: towards a more inclusive philosophy of biology. Biol Philos 22:155–191CrossRefGoogle Scholar
  47. Ochman H, Lerat E, Daubin V (2005) Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA 102:6595–6599CrossRefGoogle Scholar
  48. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740CrossRefGoogle Scholar
  49. Raup D (1966) Geometric analysis of shell coiling: general problems. J Paleontol 40:1178–1190Google Scholar
  50. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol 5(3):e77. doi: 10.1371/journal.pbio.0050077 CrossRefGoogle Scholar
  51. Sarkar S (2005) Biodiversity and environmental philosophy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  52. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Gerhard J, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120CrossRefGoogle Scholar
  53. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  54. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect—systematics and the agony of choice. Biol Conserv 55:235–254CrossRefGoogle Scholar
  55. von Wintzingerode F, Göbel UB, Stackebrand T (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  56. Wagner P (1995) Diversity patterns amongst early gastropods: Contrasting taxonomic and phylogenetic descriptions. Paleobiology 21:410–439Google Scholar
  57. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  58. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.College of Arts and LettersStevens Institute of TechnologyHobokenUSA

Personalised recommendations