Biology & Philosophy

, Volume 25, Issue 4, pp 475–496 | Cite as

The series, the network, and the tree: changing metaphors of order in nature

Article

Abstract

The history of biological systematics documents a continuing tension between classifications in terms of nested hierarchies congruent with branching diagrams (the ‘Tree of Life’) versus reticulated relations. The recognition of conflicting character distribution led to the dissolution of the scala naturae into reticulated systems, which were then transformed into phylogenetic trees by the addition of a vertical axis. The cladistic revolution in systematics resulted in a representation of phylogeny as a strictly bifurcating pattern (cladogram). Due to the ubiquity of character conflict—at the genetic or morphological level, or at any level in between—some characters will necessarily have to be discarded (qua noise) in favor of others in support of a strictly bifurcating phylogenetic tree. Pattern analysts will seek maximal congruence in the distribution of characters (ultimately of any kind) relative to a branching tree-topology; process explainers will call such tree-topologies into question by reference to incompatible evolutionary processes. Pattern analysts will argue that process explanations must not be brought to bear on pattern reconstruction; process explainers will insist that the reconstructed pattern requires a process explanation to become scientifically relevant, i.e., relevant to evolutionary theory. The core question driving the current debate about the adequacy of the ‘Tree of Life’ metaphor seems to be whether the systematic dichotomization of the living world is an adequate representation of the complex evolutionary history of global biodiversity. In ‘Questioning the Tree of Life’, it seems beneficial to draw at least four conceptual distinctions: pattern reconstruction versus process explanation as different epistemological approaches to the study of phylogeny; open versus closed systems as expressions of different kinds of population (species) structures; phylogenetic trees versus cladograms as representations of evolutionary processes versus patterns of relationships; and genes versus species as expressions of different levels of causal integration and evolutionary transformation.

Keywords

K. R. Popper W. Hennig Phylogenetic trees Cladograms Networks Species 

References

  1. Abel O (1929) Paläobiologie und Stammesgeschichte. G. Fischer, JenaGoogle Scholar
  2. Agassiz L (1859) An essay on classification. Longman, Brown, Green, Longmans and Roberts, LondonGoogle Scholar
  3. Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. PNAS 100:7678–7683CrossRefGoogle Scholar
  4. Armstrong DM (1997) A world of states of affairs. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Baer KE (1828) Ueber Entwickelungsgeschichte der Thiere. Beobachtung und Reflexion, Theil I. Gebr. Bornträger, KönigsbergGoogle Scholar
  6. Bapteste E, Boucher Y (2008) Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 16:200–207CrossRefGoogle Scholar
  7. Bapteste E, Susko E, Leigh J, MacLeod D, Charlebois RL, Doolittle WF (2005) Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol 5:33. doi:10.1186/1471-2148-5-33 CrossRefGoogle Scholar
  8. Barsanti G (1992) La scala, la mappa, l’albero. Imagini e classificazioni della natura fra Sei e Ottocento. Sansoni, FirenzeGoogle Scholar
  9. Beatty J (1982) Classes and cladists. Syst Zool 31:25–34CrossRefGoogle Scholar
  10. Beatty J (1995) The evolutionary contingency thesis. In: Wolters G, Lennox JG (eds) Concepts, theories, and rationality in the biological sciences. University of Pittsburgh Press, Pittsburgh, pp 45–81Google Scholar
  11. Bergthorsson U, Richardson AO, Young GLJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. PNAS 101:17747–17752CrossRefGoogle Scholar
  12. Bloch K (1956) Zur Theorie der naturwissenschaftlichen Systematik, unter besonderer Berücksichtigung der Biologie. Brill, LeidenGoogle Scholar
  13. Bonde N (1974) [Review of] Interrelationships of fishes, Greenwood, P.H., R.S. Miles, C. Patterson (eds.). Syst Zool 23:562–569CrossRefGoogle Scholar
  14. Bonnet Ch (1745) Traîté d’Insectologie. Première Partie. Durand Librairie, ParisGoogle Scholar
  15. Bonnet Ch (1764) Contemplation de la Nature, vol 1. Marc-Michel Rey, AmsterdamGoogle Scholar
  16. Bonnet Ch (1768) Considérations sur les Corps Organisés, vol 1, 2nd edn. Marc-Michel Rey, AmsterdamGoogle Scholar
  17. Bonnet Ch (1769) La Palingénésie Philosophique, vol 1. C. Philibert and B. Chirol, GenevaGoogle Scholar
  18. Boucher Y, Bapteste E (2009) Revisiting the concept of lineage in prokaryotes: a phylogenetic perspective. Bioessays 31:526–536CrossRefGoogle Scholar
  19. Bowler PJ (1990) Charles Darwin. The man and his influence. Basil Blackwell, OxfordGoogle Scholar
  20. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kue A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Schnitzler Parker M, Petit JLL, Porcel BM, Poulsen N, Robinson M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IVV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefGoogle Scholar
  21. Boyd R (1999) Homeostasis, species, and higher taxa. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 141–185Google Scholar
  22. Brady RH (1985) On the independence of systematics. Cladistics 1:113–126CrossRefGoogle Scholar
  23. Bredekamp H (2005) Darwins Korallen. Wagenbach Verlag, BerlinGoogle Scholar
  24. Brigandt I (2009) Natural kinds in evolution and systematics. Acta Biotheor 57:77–97CrossRefGoogle Scholar
  25. Brooks DR, McLennan DA (1991) Phylogeny, ecology, and behavior. University of Chicago Press, ChicagoGoogle Scholar
  26. Brower AVZ (2000) Evolution is not a necessary assumption of cladistics. Cladistics 16:143–154CrossRefGoogle Scholar
  27. Brower AVZ, DeSalle R, Vogler A (1996) Gene trees, species trees, and systematics. Annu Rev Ecol Syst 27:423–450CrossRefGoogle Scholar
  28. Brundin L (1966) Transantarctic relationships and their significance, as evidenced by chironomid midges. K svenska VetenskAkad Handl 4(11):1–472Google Scholar
  29. Buffon GLL (1749) Histoire Naturelle, Générale et Particulière, vol 1. Imprimerie Royale, ParisGoogle Scholar
  30. Chambers R (1844) Vestiges of the natural history of creation. John Churchill, LondonGoogle Scholar
  31. Craw R (1992) Margins of cladistics: identity, difference and place in the emergence of phylogenetic systematics, 1864–1975. In: Griffiths P (ed) Trees of life: essays in philosophy of biology. Kluwer, Dordrecht, pp 65–107Google Scholar
  32. Cuvier G (1817) Le Règne Animal distribué d’après son Organisation, vol 1. Deterville, ParisGoogle Scholar
  33. Daudin H (1926a) Cuvier et Lamarck. Les Classes Zoologiques et l’Idée de la Série Animale (1790–1830). Félix Alcan, ParisGoogle Scholar
  34. Daudin H (1926b) De Linné à Jussieu. Méthode de la Classification et l’Idée de la Série en Botanique et en Zoologie (1740–1790). Félix Alcan, ParisGoogle Scholar
  35. Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678CrossRefGoogle Scholar
  36. deBeer G (1960) Darwin’s notebooks on transmutation of species. Bull Br Mus Nat Hist (Hist Ser) 2:23–73Google Scholar
  37. Denker E, Bapteste E, Le Guyader H, Manuel M, Rabet N (2008) Horizontal gene transfer and the evolution of the cnidarian stinging cells. Curr Biol 18(18):R858–R859CrossRefGoogle Scholar
  38. deQueiroz K (1999) The general lineage concept of species and the defining properties of the species category. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 49–89Google Scholar
  39. Dollo L (1895) Sur la phylogénie des dipneustes. Bull Soc Belge Géol Paléont Hydrol 9:97–128Google Scholar
  40. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128CrossRefGoogle Scholar
  41. Doolittle WF (2009) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Philos Trans R Soc Lond B364:2221–2228CrossRefGoogle Scholar
  42. Doolittle WF, Bapteste E (2007) Pattern pluralism and the Tree of Life Hypothesis. PNAS 104:2043–2049CrossRefGoogle Scholar
  43. Duméril AMC (1806) Zoologie Analytique, ou Méthode Naturelle de Classification, 8 vols. Allais Librairie, ParisGoogle Scholar
  44. Dunning Hotopp JC, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Munoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756CrossRefGoogle Scholar
  45. Dupuis C (1984) Willi Hennig’s impact on taxonomic thought. Annu Rev Ecol Syst 15:1–24Google Scholar
  46. Ereshefsky M (2010) Microbiology and the species problem. Biol Philos (this issue—details to follow)Google Scholar
  47. Funk V (1985) Phylogenetics, patterns, and hybridization. Ann Missouri Bot Gard 72:596–635CrossRefGoogle Scholar
  48. Gaffney ES (1979) An introduction to the logic of phylogeny reconstruction. In: Cracraft J, Eldredge N (eds) Phylogenetic analysis and paleontology. Columbia University Press, New York, pp 79–111Google Scholar
  49. Gardner S (1999) Kant and the critique of pure reason. Routledge, LondonGoogle Scholar
  50. Ghiselin M (1974) A radical solution to the species problem. Syst Zool 23:536–544CrossRefGoogle Scholar
  51. Ghiselin M (1997) Metaphysics and the Origin of Species. SUNY Press, AlbanyGoogle Scholar
  52. Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213CrossRefGoogle Scholar
  53. Gogarten P (2000) Horizontal gene transfer: a new paradigm for biology. Esalen Center for Theory and Research Conference. http://www.esalenctr.org/display/confpage.cfm?confid=10&pageid=105&pgtype=1. Retrieved on 03-24-2009
  54. Gogarten P, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687CrossRefGoogle Scholar
  55. Gogarten P, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238Google Scholar
  56. Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, CambridgeGoogle Scholar
  57. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711CrossRefGoogle Scholar
  58. Grant PR, Grant BR, Markert JA, Keller LF, Petren K (2004) Convergent evolution of Darwin’s finches caused by introgressive hybridization and selection. Evolution 58:1588–1599Google Scholar
  59. Greenwood PH, Miles RS, Patterson C (1973) Interrelationships of fishes. Academic Press, LondonGoogle Scholar
  60. Griffiths PE (1999) Squaring the circle: natural kinds with historical essences. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 209–228Google Scholar
  61. Günther K (1956) Systemlehre und Stammesgeschichte. Fortschr Zool NF 10:33–278Google Scholar
  62. Günther K (1962) Systematik und Stammengeschichte der Thiere, 1954–1959. Fortschr Zool NF 14:268–547Google Scholar
  63. Hennig W (1950) Grundzüge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, BerlinGoogle Scholar
  64. Hennig W (1957) Systematik und Phylogenese. In: Hannemann HJ (ed) Bericht über die Hundertjahrfeier der Deutschen Entomologischen Gesellschaft Berlin. Akademie Verlag, Berlin, pp 50–71Google Scholar
  65. Hennig W (1965) Phylogenetic systematics. Annu Rev Entomol 10:97–116CrossRefGoogle Scholar
  66. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  67. Hull DL (1976) Are species really individuals. Syst Zool 25:174–191CrossRefGoogle Scholar
  68. Hull DL (1979) The limits of cladism. Syst Zool 28:416–440CrossRefGoogle Scholar
  69. Hull DL (1988) Science as a process. An evolutionary account of the social and conceptual development of science. The University of Chicago Press, ChicagoGoogle Scholar
  70. Hull DL (1989) The metaphysics of evolution. State University of New York Press, AlbanyGoogle Scholar
  71. Hull DL (1999) On the plurality of species: questioning the party line. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 23–48Google Scholar
  72. Humphries CJ (1983) Primary data in hybrid analysis. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York, pp 89–103Google Scholar
  73. Kluge AG (2003) The repugnant and the mature in phylogenetic inference: atemporal similarity and historical identity. Cladistics 19:356–368CrossRefGoogle Scholar
  74. Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B361:1929–1940CrossRefGoogle Scholar
  75. Kuhn TS (1974) Logic of discovery or psychology of research. In: Lakatos I, Musgrave A (eds) Criticism and the growth of knowledge. Cambridge University Press, Cambridge, pp 1–23Google Scholar
  76. Lauder GV (1990) Functional morphology and systematics: studying functional patterns in an historical context. Annu Rev Ecol Syst 21:317–340CrossRefGoogle Scholar
  77. Laurin M, Bryant HN (2009) The third meeting on the International Society for Phylogenetic Nomenclature: a report. Zool Scr 38:333–337CrossRefGoogle Scholar
  78. Lienau EK, DeSalle R (2009) Evidence, content and corroboration and the tree of life. Acta Biotheor 57:187–199CrossRefGoogle Scholar
  79. Loftus BL, Anderson I, Davies R, Alsmark UCM, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhatttacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Gullién N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA Jr, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868CrossRefGoogle Scholar
  80. Lorenz K (1941a) Kants Lehre vom Apriorischen im Lichte gegenwärtiger Biologie. Blätter Deutsch Philos 15:94–125Google Scholar
  81. Lorenz K (1941b) Vergleichende Bewegungsstudien an Anatinen. J Ornithol 89(Suppl):194–293Google Scholar
  82. Lovejoy AO (1936) The great chain of being. Harvard University Press, CambridgeGoogle Scholar
  83. Lovejoy AO (1959) Recent criticism of the Darwinian theory of recapitulation: its grounds and its initiator. In: Glass B, Temkin O, Straus WK Jr (eds) Forerunners of Darwin, 1745–1859. The Johns Hopkins University Press, Baltimore, pp 438–458Google Scholar
  84. Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536Google Scholar
  85. Magee B (1973) Popper. Fontana, New YorkGoogle Scholar
  86. Mayr E (1963) Animal species and evolution. Belknap Press at Harvard University Press, CambridgeGoogle Scholar
  87. Mayr E (1969) Principles of systematic zoology. McGraw-Hill, New YorkGoogle Scholar
  88. Mayr E (1974) Cladistic analysis or cladistic classification. Zeitschr Zool Syst Evolutforsch 12:94–128CrossRefGoogle Scholar
  89. Mayr E (1982) The growth of biological thought. The Belknap Press at Harvard University Press, CambridgeGoogle Scholar
  90. Miles RS (1973) Relationships of acanthodians. In: Greenwood PH, Miles RS, Patterson C (eds) Interrelationships of fishes. Academic Press, London, pp 63–103Google Scholar
  91. Miles RS (1975) The relationships of the Dipnoi. In: Lehman JP (ed) Problèmes Actuels de Paléontologie (Evolution des Verttébrés). Colloques Internationaux du Centre National de la Rercherche Scientifique, Paris, pp 133–148Google Scholar
  92. Miller H (1849) Footprints of the Creator, or the Asterolepis of Stromness. Johnstone and Hunter, LondonGoogle Scholar
  93. Millhauser M (1959) Just before Darwin. Wesleyan University Press, MiddletownGoogle Scholar
  94. Müller-Wille S (2007) Collection and collation: theory and practice of Linnean botany. Stud Hist Philos Biol Biomed Sci 38:541–562CrossRefGoogle Scholar
  95. Nedelcu AM, Miles IH, Fagir AM, Karol K (2008) Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals. J Evol Biol 21:1852–1860CrossRefGoogle Scholar
  96. Nelson G (2004) Cladistics: its arrested development. In: Williams DM, Forey PL (eds) Milestones in systematics. CRC Press, Boca Raton, pp 127–147Google Scholar
  97. Nelson G (2007) Patterson, Colin. In: Koertge N (ed) New dictionary of scientific biography, vol 6, 2nd edn. Gale Cengage, Farmington Hills, pp 30–34Google Scholar
  98. Okasha S (2006) Evolution and the levels of selection. Clarendon Press, OxfordCrossRefGoogle Scholar
  99. Ospovat D (1981) The development of Darwin’s theory. Cambridge University Press, CambridgeGoogle Scholar
  100. Panchen AL (1992) Classification, evolution, and the nature of biology. Cambridge University Press, CambridgeGoogle Scholar
  101. Patterson C (1981) Significance of fossils in determining evolutionary relationships. Annu Rev Ecol Syst 12:195–223CrossRefGoogle Scholar
  102. Patterson C (1982) Morphological characters and homology. In: Joysey K, Friday AE (eds) Problems of phylogenetic reconstruction. Academic Press, London, pp 21–74Google Scholar
  103. Patterson C (2002) Evolution and creationism. The Linnean 18:15–32Google Scholar
  104. Platnick NI (1977) Cladograms, phylogenetic trees, and hypothesis testing. Syst Zool 26:438–442CrossRefGoogle Scholar
  105. Popper KR (1959 [1992]) The logic of scientific discovery. Routledge and Kegan Paul, LondonGoogle Scholar
  106. Popper KR (1963) Conjectures and refutations: the growth of scientific knowledge. Routledge and Kegan Paul, LondonGoogle Scholar
  107. Rensch B (1947) Neuere Probleme der Abstammungslehre: Die Transspezifische Evolution. Enke, StuttgartGoogle Scholar
  108. Rensch B (1968) Biophilosophie auf erkenntnistheoretischer Grundlage (Panpsychistischer Identismus). Fischer, StuttgartGoogle Scholar
  109. Rensch B (1979) Lebensweg eines Biologen in einem turbulenten Jahrhundert. Fischer, StuttgartGoogle Scholar
  110. Retchless AC, Lawrence JG (2007) Temporal fragmentation of species in bacteria. Science 317:1093–1096CrossRefGoogle Scholar
  111. Richards RJ (1992) The meaning of evolution. The morphological construction and ideological reconstruction of Darwin’s theory. University of Chicago Press, ChicagoGoogle Scholar
  112. Richards RJ (2002) The romantic conception of life. Science and philosophy in the age of Goethe. University of Chicago Press, ChicagoGoogle Scholar
  113. Richards RJ (2008) The tragic sense of life. Ernst Haeckel and the struggle over evolutionary thought. University of Chicago Press, ChicagoGoogle Scholar
  114. Rieppel O (1986) Species are individuals: a review and critique of the argument. Evol Biol 20:283–317Google Scholar
  115. Rieppel O (2004) The language of systematics, and the philosophy of ‘total evidence’. Syst Biodivers 2:9–19CrossRefGoogle Scholar
  116. Rieppel O (2005) The philosophy of total evidence and its relevance for phylogenetic inference. Pap Avulsos Zool 45:77–89Google Scholar
  117. Rieppel O (2006a) On concept formation in systematics. Cladistics 22:474–492CrossRefGoogle Scholar
  118. Rieppel O (2006b) Willi Hennig on transformation series: metaphysics and epistemology. Taxon 55:377–385CrossRefGoogle Scholar
  119. Rieppel O (2007a) Parsimony, likelihood, and instrumentalism in systematics. Biol Philos 22:141–144CrossRefGoogle Scholar
  120. Rieppel O (2007b) The metaphysics of Hennig’s phylogenetic systematics: substance, events and laws of nature. Syst Biodivers 5:345–360CrossRefGoogle Scholar
  121. Rieppel O (2007c) Species: kinds of individuals or individuals of a kind. Cladistics 23:373–384CrossRefGoogle Scholar
  122. Rieppel O (2008a) Total evidence in phylogenetic systematics. Biol Philos. doi:10.1007/s10539-008-9122-1
  123. Rieppel O (2008b) Re-writing Popper’s philosophy of science for systematics. Hist Philos Life Sci 30:317–340Google Scholar
  124. Rieppel O (2008c) Hypothetico-deductivism in systematics: fact or fiction? Pap Avulsos Zool 48:263–273Google Scholar
  125. Rieppel O (2009) Species as a process. Acta Biotheor 57:33–49CrossRefGoogle Scholar
  126. Rieppel O, Rieppel M, Rieppel L (2006) Logic in systematics. J Zool Syst Evol Res 44:186–192CrossRefGoogle Scholar
  127. Russell ES (1916) Form and function. A contribution to the history of animal morphology. John Murray, LondonGoogle Scholar
  128. Savioz R (1948) Mémoires autobiographiques de Charles Bonnet de Genève. Librairie Philosophique J. Vrin, ParisGoogle Scholar
  129. Serres E (1824) Explication du système nerveux des animaux invertébrés. Ann Sci Nat Paris 3:377–380Google Scholar
  130. Simpson GG (1961) Principles of animal taxonomy. Columbia University Press, New YorkGoogle Scholar
  131. Stamos DN (2007) Popper, laws, and the exclusion of biology from genuine science. Acta Biotheor 55:357–375CrossRefGoogle Scholar
  132. Steiner H (1946) Sinai Tschulok (16. April 1875 bis 6. Dezember 1945). Vierteljahresschr Natforsch Ges Zürich 91:70–72Google Scholar
  133. Stevens PF (1994) The development of biological systematics. Columbia University Pess, New YorkGoogle Scholar
  134. Striepen B, Pruijssers AJP, Huang J, Li C, Gubbels MJ, Umejiego NN, Hedstrom L, Kissinger JC (2004) Gene transfer in the evolution of parasite nucleotide biosynthesis. PNAS 101:3154–3159CrossRefGoogle Scholar
  135. Takhtajan A (1959) Die Evolution der Angiospermen. Fischer, JenaGoogle Scholar
  136. Trembley A (1744) Mémoires Pour Servir à l’Histoire d’un Genre de Polypes d’Eau Douce. Jean & Herman Verbeek, LeidenGoogle Scholar
  137. Tschulok S (1910) Das System der Biologie in Forschung und Lehre. Fischer, JenaGoogle Scholar
  138. Tschulok S (1922) Deszendenzlehre. Fischer, JenaGoogle Scholar
  139. Wagner WH (1983) Reticulistics: the recognition of hybrids and their role in cladistics and classification. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York, pp 63–79Google Scholar
  140. Wagner PJ, Erwin DH (1995) Phylogenetic patterns as tests of speciation models. In: Erwin DH, Anstey RL (eds) New approaches to speciation in the fossil record. Columbia University Press, New York, pp 87–122Google Scholar
  141. Wheeler QD, Meier R (2000) Species concepts and phylogenetic theory. A debate. Columbia University Press, New YorkGoogle Scholar
  142. Williams PA (1992) Confusion in cladism. Synthese 91:135–152CrossRefGoogle Scholar
  143. Williams DM, Ebach MC (2007) Foundations of systematics and biogeography. Springer, BerlinGoogle Scholar
  144. Williams DM, Scotland RW, Humphries CJ, Siebert DJ (1996) Confusion in philosophy: a comment on Williams (1992). Synthese 108:127–136CrossRefGoogle Scholar
  145. Wilson EO (1965) A consistency test for phylogenies based on contemporaneous species. Syst Zool 14:214–220CrossRefGoogle Scholar
  146. Wilson J (1999) Biological individuality. The identity and persistence of living entities. Cambridge University Press, CambridgeGoogle Scholar
  147. Woodger JH (1952) From biology to mathematics. Br J Philos Sci 3:1–21CrossRefGoogle Scholar
  148. Ziehen Th (1934) Erkenntnistheorie. Zweite Auflage. Erster Teil. Allgemeine Grundlegung der Erkennnistheorie. Spezielle Erkenntnistheorie der Empfindungstatsachen einschliesslich Raumtheorie. Fischer, JenaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of GeologyThe Field MuseumChicagoUSA

Personalised recommendations