Advertisement

Biology & Philosophy

, Volume 25, Issue 4, pp 553–568 | Cite as

Microbiology and the species problem

  • Marc Ereshefsky
Article

Abstract

This paper examines the species problem in microbiology and its implications for the species problem more generally. Given the different meanings of ‘species’ in microbiology, the use of ‘species’ in biology is more multifarious and problematic than commonly recognized. So much so, that recent work in microbial systematics casts doubt on the existence of a prokaryote species category in nature. It also casts doubt on the existence of a general species category for all of life (one that includes both prokaryotes and eukaryotes). Prokaryote biology also undermines recent attempts to save the species category, such as the suggestion that species are metapopulation lineages and the idea that ‘species’ is a family resemblance concept.

Keywords

Microbiology Prokaryotes Species Species category Species concepts 

Notes

Acknowledgments

I would like to thank Eric Bapteste, Richard Boyd, Ingo Brigandt, Ford Doolittle, David Hull, Maureen O’Malley, Elliott Sober, Joel Velasco, and two anonymous referees for their helpful suggestions. The Social Sciences and Humanities Research Council of Canada provided financial support for this project.

References

  1. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nature Rev 6:431–440Google Scholar
  2. Bapteste E, Boucher Y (2008) Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 16:200–2007CrossRefGoogle Scholar
  3. Bapteste E, Boucher Y (2009) Some epistemological impacts of horizontal gene transfer on classification and microbiology. Methods Mol Biol 532:55–72CrossRefGoogle Scholar
  4. Baum D, Donoghue M (1995) Choosing among alternative “phylogenetic” species concepts. Syst Biol 20:560–573Google Scholar
  5. Beatty J (1992) Speaking of species: Darwin’s strategy. In: Ereshefsky M (ed) The units of evolution. MIT Press, Cambridge, pp 227–246Google Scholar
  6. Boyd R (1999) Homeostasis, species, and higher taxa. In: Wilson R (ed) Species: new interdisciplinary essays. MIT Press, Cambridge, pp 141–186Google Scholar
  7. Brigandt I (2003) Species pluralism does not imply species eliminativism. Philos Sci 70:1305–1316CrossRefGoogle Scholar
  8. Cohan F (2002) What are bacterial species? Annu Rev Microbiol 56:457–487CrossRefGoogle Scholar
  9. Coyne J, Orr A (2004) Speciation. Sinauer Associates, SutherlandGoogle Scholar
  10. Darwin C (1859[1964]) On the origin of species: a facsimile of the first edition. Harvard University Press, CambridgeGoogle Scholar
  11. De Queiroz K (1999) The general lineage concept of species and the defining properties of the species category. In: Wilson R (ed) Species: new interdisciplinary essays. MIT Press, Cambridge, pp 49–90Google Scholar
  12. De Queiroz K (2005) Different species problems and their resolution. BioEssays 27:1263–1269CrossRefGoogle Scholar
  13. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:866–879Google Scholar
  14. Doolittle F, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci 104:2043–2049CrossRefGoogle Scholar
  15. Doolittle F, Papke T (2006) Genomics and the bacterial species problem. Genome Biol 7:116.1–116.7CrossRefGoogle Scholar
  16. Doolittle F, Zhaxybayeva O (2009) On the origin of prokaryotic species. Genome Res 19:744–756CrossRefGoogle Scholar
  17. Dykuizen D, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268Google Scholar
  18. Ereshefsky M (ed) (1992a) The units of evolution: essays on the nature of species. MIT Press, CambridgeGoogle Scholar
  19. Ereshefsky M (1992b) Eliminative pluralism. Philos Sci 59:671–690CrossRefGoogle Scholar
  20. Ereshefsky M (1998) Species pluralism and anti-realism. Philos Sci 65:103–120CrossRefGoogle Scholar
  21. Ereshefsky M (2001) The poverty of the linnaean hierarchy: a philosophical study of biological taxonomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Ereshefsky M (2009) Darwin’s solution to the species problem. Synthese. doi: 10.1007/s11229-009-9538-4
  23. Franklin L (2007) Bacteria, sex, and systematics. Philos Sci 74:69–95CrossRefGoogle Scholar
  24. Fraser C, Hange B, Spratt B (2007) Recombination and the nature of bacterial speciation. Science 315:476–480CrossRefGoogle Scholar
  25. Gevers D et al (2005) Re-evaluating prokaryote species. Nat Rev Microbiol 3:1043–1047CrossRefGoogle Scholar
  26. Gogarten J, Townsend J (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687CrossRefGoogle Scholar
  27. Griffiths PE (2006) Function, homology and character individuation. Philos Sci 73:1–25CrossRefGoogle Scholar
  28. Griffiths PE (2007) The phenomena of homology. Biol Philos 22:643–658CrossRefGoogle Scholar
  29. Hanage W, Fraser C, Spratt B (2005) Fuzzy species among recombinogenic bacteria. BMC Biol 3:6CrossRefGoogle Scholar
  30. Hull D (1965) The effect of essentialism on taxonomy: two thousand years of stasis. Br J Philos Sci 15:314–326, 16:1–18Google Scholar
  31. Konstantinidis K, Tiedje J (2005) Genomic insights that advance the species definition for prokaryotes. PNAS 102:2567–2572CrossRefGoogle Scholar
  32. Lan R, Reeves P (2001) When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol 9:419–424CrossRefGoogle Scholar
  33. Lawrence J (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460CrossRefGoogle Scholar
  34. Lawrence JG, Retchless A (2010) The myth of bacterial species and speciation. Biol Phil. doi: 10.1007/s10539-010-9215-5
  35. Maddison W (1997) Gene trees in species trees. Syst Biol 46:523–536Google Scholar
  36. Mayden R (2002) On biological species, species concepts and individuation in the natural world. Fish Fish 3:171–196Google Scholar
  37. Mayr E (1970) Populations, species and evolution. Harvard University Press, CambridgeGoogle Scholar
  38. Mishler B, Brandon R (1987) Individuality, pluralism, and the phylogenetic species concept. Biol Philos 2:397–414CrossRefGoogle Scholar
  39. Morgan G, Pitts W (2008) Evolution without species: the case of mosaic bacteriophages. Br J Philos sci 59:745–765CrossRefGoogle Scholar
  40. Nesbø C, Dultek M, Doolittle F (2006) Recombination in thermotoga: implications for species concepts and biogeography. Genetics 172:759–769CrossRefGoogle Scholar
  41. Nixon W, Wheeler Q (1990) An amplification of the phylogenetic species concept. Cladistics 6:211–223CrossRefGoogle Scholar
  42. O’Malley M, Duprè J (2007) Size doesn’t matter: towards a more inclusive philosophy of biology. Biol Philos 22:155–191CrossRefGoogle Scholar
  43. Paul J (1999) Microbial transfer: an ecological perspective. J Mol Microbiol Biotechnol 1:45–50Google Scholar
  44. Pigliucci M (2003) Species as family resemblance concepts: the (dis-)solution of the species problem? BioEssays 25:96–602CrossRefGoogle Scholar
  45. Pigliucci M, Kaplan J (2006) Making sense of evolution: conceptual foundations of evolutionary biology. Chicago University Press, ChicagoGoogle Scholar
  46. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67CrossRefGoogle Scholar
  47. Stackebrandt E (2006) Defining taxonomic ranks. In: Dworkin M (ed) Prokaryotes: a handbook on the biology of bacteria, vol 1. Springer, New York, pp 29–57Google Scholar
  48. Stackebrandt E, Frederiksen W, Garrity G et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047CrossRefGoogle Scholar
  49. Touhon M, Hoede C, Tenaillon O et al (2009) Organised genome dynamics in the Escherihcia coli species results in highly diverse adaptive paths. PLos Genetics 5:e1000344. doi: 10.1371/journal.pgen.1000344 CrossRefGoogle Scholar
  50. Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239CrossRefGoogle Scholar
  51. Wertz J, Goldstone C, Gordon D, Riley M (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248CrossRefGoogle Scholar
  52. Wilson R (ed) (1999) Species: new interdisciplinary essays. MIT Press, CambridgeGoogle Scholar
  53. Wilson R, Barker M, Brigandt I (2009) When traditional essentialism fails: biological natural kinds. Philosophical Topics (in press)Google Scholar
  54. Xu J (2004) The prevalence and evolution of sex in microorganisms. Genome 47:775–780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of CalgaryCalgaryCanada

Personalised recommendations