Biology & Philosophy

, Volume 24, Issue 3, pp 301–324 | Cite as

Simulation experiments in bionics: a regulative methodological perspective

Article

Abstract

Bionic technologies connecting biological nervous systems to computer or robotic devices for therapeutic purposes have been recently claimed to provide novel experimental tools for the investigation of biological mechanisms. This claim is examined here by means of a methodological analysis of bionics-supported experimental inquiries on adaptive sensory-motor behaviours. Two broad classes of bionic systems (regarded here as hybrid simulations of the target biological system) are identified, which differ from each other according to whether a component of the biological target system is replaced by an artificial component, or else a component of an artificial system is replaced by a biological component. The role of these hybrid systems in the modelling of adaptive sensory-motor biological behaviours is discussed with reference to bionics-supported experiments on the mechanisms of body stabilization in lampreys. Methodological problems emerging from these case studies often arise in computer-based and biorobotic simulations of biological behaviours too. Accordingly, the present analysis contributes to identifying a more general regulative methodological framework for the machine-based modelling of biological systems.

Keywords

Bionics Biorobotic experiments Cybernetics Methodology of simulations Theoretical models of adaptive behaviours 

References

  1. Achinstein P (1965) Theoretical models. Br J Philos Sci 16:102–120. doi:10.1093/bjps/XVI.62.102 CrossRefGoogle Scholar
  2. Amit DJ (1998) Simulation in neurobiology: theory or experiment. Trends Neurosci 21(6):231–237. doi:10.1016/S0166-2236(97)01201-0 CrossRefGoogle Scholar
  3. Bechtel W, Richardson RC (1993) Discovering complexity: decomposition and localization as strategies in scientific research. Princeton University Press, Princeton, NJ. Out of print; available: http://mechanism.ucsd.edu/–bill/discoveringcomplexity.html
  4. Carmena JM, Lebedev MA, Crist RE et al (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1(2):193–208. doi:10.1371/journal.pbio.0000042 CrossRefGoogle Scholar
  5. Chapin JK, Moxon KA, Markowitz RS et al (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2(7):664–670. doi:10.1038/10223 CrossRefGoogle Scholar
  6. Cordeschi R (2002) The discovery of the artificial. Behavior mind and machines before and beyond cybernetics. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. Craver CF (2007) Explaining the brain: mechanisms and the mosaic unity of neuroscience. Oxford University Press, New YorkGoogle Scholar
  8. Craver CF, Darden L (2001) Discovering mechanisms in neurobiology: the case of spatial memory. In: Machamer PK, Grush R, McLaughlin P (eds) Theory and method in neuroscience. University of Pittsburgh Press, Pittsburgh, pp 112–137Google Scholar
  9. Cummins R (1975) Functional analysis. J Philos 72(20):741–765. doi:10.2307/2024640 CrossRefGoogle Scholar
  10. Datteri E, Tamburrini G (2007) Biorobotic experiments for the discovery of biological mechanisms. Philos Sci 74:409–430. doi:10.1086/522095 CrossRefGoogle Scholar
  11. Glennan S (2005) Modeling mechanisms. Stud Hist Philos Biol Biomed Sci 36:443–464. doi:10.1016/j.shpsc.2005.03.011 CrossRefGoogle Scholar
  12. Hochberg LR, Serruya MD, Friehs GM et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171. doi:10.1038/nature04970 CrossRefGoogle Scholar
  13. Hopkins JC, Leipold RJ (1996) On the dangers of adjusting the parameters values of mechanism-based mathematical models. J Theor Biol 183(4):417–427. doi:10.1006/jtbi.1996.0232 CrossRefGoogle Scholar
  14. Karniel A, Kositsky M, Fleming KM et al (2005) Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system. J Neural Eng 2:S250–S265. doi:10.1088/1741-2560/2/3/S08 CrossRefGoogle Scholar
  15. Lebedev MA, Nicolelis MAL (2006) Brain-machine interfaces: past, present and future. Trends Neurosci 29(9):536–546. doi:10.1016/j.tins.2006.07.004 CrossRefGoogle Scholar
  16. Lloyd E (1987) Confirmation of ecological and evolutionary models. Biol Philos 2:277–293. doi:10.1007/BF00128834 CrossRefGoogle Scholar
  17. Machamer P, Darden L, Craver CF (2000) Thinking about mechanisms. Philos Sci 67:1–25. doi:10.1086/392759 CrossRefGoogle Scholar
  18. Millán JdR, Renkens F, Mouriño J et al (2004) Brain-actuated interaction. Artif Intell 159(1–2):241–259. doi:10.1016/j.artint.2004.05.008 CrossRefGoogle Scholar
  19. Nagel E (1961) The structure of science: problems in the logic of scientific explanation. Routledge and Kegan Paul, LondonGoogle Scholar
  20. Navarro X, Krueger TB, Lago N et al (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10:229–258. doi:10.1111/j.1085-9489.2005.10303.x CrossRefGoogle Scholar
  21. Nicolelis MAL (2003) Brain-machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci 4:417–422. doi:10.1038/nrn1105 CrossRefGoogle Scholar
  22. Orlovsky GN, Deliagina TG, Wallén P (1992) Vestibular control of swimming in lamprey I Responses of reticulospinal neurons to roll and pitch. Exp Brain Res 90:479–488. doi:10.1007/BF00230930 CrossRefGoogle Scholar
  23. Pascual-Leone A, Davey NJ, Rothwell J et al (eds) (2002) Handbook of transcranial magnetic stimulation. Arnold, LondonGoogle Scholar
  24. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18. doi:10.1016/j.jneumeth.2005.08.015 CrossRefGoogle Scholar
  25. Reger BD, Fleming KM, Sanguineti V et al (2000) Connecting brains to robots: an artificial body for studying the computational properties of neural tissues. Artif Life 6(4):307–324. doi:10.1162/106454600300103656 CrossRefGoogle Scholar
  26. Rosenblueth A, Wiener N (1945) The role of models in science. Philos Sci 12:316–321. doi:10.1086/286874 CrossRefGoogle Scholar
  27. Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:487–507. doi:10.1146/annurev.neuro.27.070203.144233 CrossRefGoogle Scholar
  28. Tamburrini G, Datteri E (2005) Machine experiments and theoretical modelling: from cybernetic methodology to neuro-robotics. Minds Mach 15(3–4):335–358. doi:10.1007/s11023-005-2924-x CrossRefGoogle Scholar
  29. Webb B, Consi TR (2001) Biorobotics: methods and applications. The MIT PressGoogle Scholar
  30. Wessberg J, Stambaugh CR, Kralik JD et al (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–365. doi:10.1038/35042582 CrossRefGoogle Scholar
  31. Woodward J (2002) What is a mechanism? A counterfactual account. Philos Sci 69:S366–S377. doi:10.1086/341859 CrossRefGoogle Scholar
  32. Woodward J (2003) Making things happen. A theory of causal explanation. Oxford University Press, New YorkGoogle Scholar
  33. Zelenin PV, Deliagina TG, Grillner S et al (2000) Postural control in the lamprey: a study with a neuro-mechanical model. J Neurophysiol 84:2880–2887Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Dipartimento di Scienze Umane per la Formazione “Riccardo Massa”Università degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations