Advertisement

Biology & Philosophy

, Volume 24, Issue 1, pp 119–128 | Cite as

Prebiotic world, macroevolution, and Darwin’s theory: a new insight

  • Luis BotoEmail author
  • Ignacio Doadrio
  • Rui Diogo
Article

Abstract

Darwin’s main contribution to modern biology was to make clear that all history of life on earth is dominated by a simple principle, which is usually summarised as 'descent with modification'. However, interpretations about how this modification is produced have been controversial. In light of the data provided by recent studies on molecular biology, developmental biology, genomics, and other biological disciplines we discuss, in this paper, how Darwin's theory may apply to two main 'types' of evolution: that occurring in the prebiotic world and that regarding the acquisition of major key-innovations differentiating higher-taxa, which makes up part of the so-called macroevolution. We argue that these studies show that evolution is a fascinating, complex and multifaceted process, with different mechanisms drivin it on different occasions and in different places.

Keywords

Darwin Evolution Key-innovations Macroevolution Prebiotic world 

Notes

Acknowledgments

This paper is dedicated to the memory of Prof. Pere Alberch. We specially acknowledge A. García Valdecasas, N. Lonergan, Kim Sterelny, and an anonymous referee for the improvement of this manuscript, as well as F. Meunier, D. Adriaens, M. de Pinna, P. Skelton, F. Poyato-Ariza, T. Grande, H. Gebhardt, M. Ebach, A. Wyss, J. Waters, G. Cuny, L. Cavin, F. Santini, J. Briggs, L. Gahagan, M. Gayet, J. Alves-Gomes, G. Lecointre, L. Soares-Porto, P. Bockmann, T. Roberts, G. Arratia, L. Taverne, C. Ferraris, C. Borden, E. Parmentier, P. Vandewalle, M. Chardon, B. Richmond, B. Wood, B. Hall and F. Galis and many other colleagues for their helpful advice and assistance and for their discussions on evolution.

References

  1. Aravind L, Koonin EV (1999) The fukutin protein. Curr Biol 9:836–837CrossRefGoogle Scholar
  2. Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261:1411–1418CrossRefGoogle Scholar
  3. Bemis W (1984) Paedomorphosis and the evolution of Dipnoi. Paleobiology 10:293–307Google Scholar
  4. Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438CrossRefGoogle Scholar
  5. Brown JR (2003) Ancient horizontal gene transfer. Nat Rev Genet 4:121–132CrossRefGoogle Scholar
  6. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287CrossRefGoogle Scholar
  7. Christoffels A, Koh EGL, Chia J-M, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidences for a whole genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151CrossRefGoogle Scholar
  8. Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L (2005) Chromosome evolution in Eukaryotes: a Multi-kindong perspective. Trends Genet 21:673–682CrossRefGoogle Scholar
  9. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800CrossRefGoogle Scholar
  10. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of the favored races in the struggle for life. D Appleton, New York, USAGoogle Scholar
  11. Dearden P, Akam M (1999) Developmental evolution: axial patterning in Insects. Curr Biol 9:591–594CrossRefGoogle Scholar
  12. de Duve C (2005) The onset of selection. Nature 433:581–582CrossRefGoogle Scholar
  13. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. Plos Biol 3:314CrossRefGoogle Scholar
  14. Diogo R (2004) Morphological evolution, aptations, homoplasies, constraints, and evolutionary trends: catfishes as a case study on general phylogeny and macroevolution. Science Publishers, Enfield, USAGoogle Scholar
  15. Diogo R In press. On the origin of higher clades: osteology, myology, phylogeny and evolution of bony fishes and the rise of tetrapods. Science Publishers, Enfield, USAGoogle Scholar
  16. Diogo R, Vandewalle P (2003) Catfishes as a case study for discussions on general evolution: the importance of functional uncouplings in morphological macroevolution. Eur J Morphol 41:139–148Google Scholar
  17. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  18. Donoghue PCJ, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312–319CrossRefGoogle Scholar
  19. Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci US 104:2043–2049CrossRefGoogle Scholar
  20. Forterre P (2005) The two ages of the RNA world, and transition to the DNA world: a story of viruses and cells. Biochimie 87:793–803CrossRefGoogle Scholar
  21. Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16CrossRefGoogle Scholar
  22. Fry I (2006) The origins of research into the origins of life. Endeavour 30:24–28CrossRefGoogle Scholar
  23. Galtier N, Tourasse N, Gouy M (1999) Non hypertermophilic common ancestor to extant life forms. Science 283:220–221CrossRefGoogle Scholar
  24. Garcia Fernadez J, Holland PW (1994) Archetypal organization of the Amphioxus Hox gene cluster. Nature 370:563–566CrossRefGoogle Scholar
  25. Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer of Glycosyl Hydrolases of the rumen fungi. Mol Biol Evol 17:352–361Google Scholar
  26. Ge F, Wang L-S, Kim J (2005) The cobweb of life revealed by genome-scale estimates of horizontal transfer. Plos Biol 3:316CrossRefGoogle Scholar
  27. Gilbert W (1986) The RNA world. Nature 319:618CrossRefGoogle Scholar
  28. Ginolhac CA, Jarrin C, Robe P, Perriere G, Vogel TM, Simonet P, Nalin R (2005) Type I polyketide synthases may have evolved trough horizontal gene transfer. J Mol Biol 60:716–725Google Scholar
  29. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238Google Scholar
  30. Goldenfeld N, Woese C (2007) Biology’s next revolution. Nature 445:369CrossRefGoogle Scholar
  31. Gould SJ (2002) The structure of Evolutionary theory. The Belknap Press of Harvard University Press, Cambridge, MA, LondonGoogle Scholar
  32. Gupta RS, Golding GB (1993) Evolution of Hsp70 gene and its implications regarding relationships between Archaebacteria, Eubacteria , and Eukaryotes. J Mol Evol 37:573–582CrossRefGoogle Scholar
  33. Haldane JBS (1967) The origin of life. In: Bernal JD (ed) The origin of life. Appendix II, Weidenfeld and Nicolson, London, UK, pp 242–249Google Scholar
  34. Hancock JM (2005) Gene factories, microfunctionalization and the evolution of gene families. Trends Genet 21:541–545CrossRefGoogle Scholar
  35. Holland PW, Garcia Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origin of vertebrate development. Dev Suppl 43:125–133Google Scholar
  36. Jeffares DC, Poole D, Penny D (1998) Relics from the RNA world. J Mol Biol 46:18–36Google Scholar
  37. Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trend Ecol Evol 20:495–502CrossRefGoogle Scholar
  38. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in yeast Saccharomyces cerevisiae. Nature 428:617–624CrossRefGoogle Scholar
  39. Kirschner MW, Gerhart JC (2005) The plausibility of life: resolving Darwin’s dilemma. Yale University Press, London, UKGoogle Scholar
  40. Koga Y, Kyurai T, Nisihara M, Sone N (1998) Archaeal and Bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipids with enantiomeric glycerophosphate backbone caused the separation of the two lines of descent. J Mol Evol 46:54–63CrossRefGoogle Scholar
  41. Koonin EV, Martin W (2005) On the origin of genomes and cells. Trends Genet 21:647–654CrossRefGoogle Scholar
  42. Kroll JS, Wilks KE, Farrant JL, Langford FR (1998) Natural genetic exchange between Haemophilus and Neisseria: Intergeneric transfer of chromosomal genes between major human pathogens. P Natl Acad Sci USA 95:12381–12385CrossRefGoogle Scholar
  43. Kurland CG (2005) What tangled web. Barriers to rampant horizontal gene transfer. Bioessays 27:741–747CrossRefGoogle Scholar
  44. Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014CrossRefGoogle Scholar
  45. Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401CrossRefGoogle Scholar
  46. Lawrence MS, Bartel DP (2005) New ligase-derived RNA polymerase ribozymes. Rna 11:1173–1180CrossRefGoogle Scholar
  47. Lester L, Meade A, Pagel M (2005) The slow road to the eukaryotic genome. Bioessays 28:57–64CrossRefGoogle Scholar
  48. Lewontin RC, Birch RC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336CrossRefGoogle Scholar
  49. Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721CrossRefGoogle Scholar
  50. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155CrossRefGoogle Scholar
  51. Lynch J, Desplan C (2003) Evolution of development: beyond bicoid. Curr Biol 13:557–559CrossRefGoogle Scholar
  52. Lynch M, Katju V (2004) The altered trajectories of gene duplicates. Trends Genet 20:544–549CrossRefGoogle Scholar
  53. Ma W, Yu C (2005) Intramolecular RNA replicase: possibly the first self-replicating molecule in the RNA world. Origins Life Evol B 36:413–420CrossRefGoogle Scholar
  54. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237CrossRefGoogle Scholar
  55. Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, UKGoogle Scholar
  56. Melosh HJ (1988) The rocky road to Panspermia. Nature 322:687–688CrossRefGoogle Scholar
  57. Meyer A, van de Peer Y (2005) From 2R to 3R. Evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937–945CrossRefGoogle Scholar
  58. Miller SL (1998) The endogenous synthesis of organic compound. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University press, Cambridge, pp 59–85Google Scholar
  59. Mossel E, Steel M (2005) Random biochemical networks: the probability of self-sustaining autocatalysis. J Theor Biol 233:327–336CrossRefGoogle Scholar
  60. Muller HJ (1936) Bar duplication. Science 83:528–530CrossRefGoogle Scholar
  61. Müller UF (2006) Re-creating an RNA world. Cell Mol Life Sci 63:1278–1293CrossRefGoogle Scholar
  62. Nesbo C, L´Haridon S, Setter KO, Doolittle WF (2001) Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between Archaea and Bacteria. Mol Biol Evol 18:362–375Google Scholar
  63. Ohno S (1970) Evolution by gene and genome duplication. Springer, Berlin, GermanyGoogle Scholar
  64. Oparin AI (1967) The origin of life. In: Bernal JD (ed) The origin of life. Appendix I, Weidenfeld and Nicolson, London, UK, pp 199–235Google Scholar
  65. Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123CrossRefGoogle Scholar
  66. Pal C, Papp B, Lercher MJ (2005) Adaptative evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37:1372–1375CrossRefGoogle Scholar
  67. Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications. The adventure of a hypothesis. Trends Genet 21:559–567CrossRefGoogle Scholar
  68. Penny D (2005) An interpretative review of the origin of life research. Biol Phil 20:633–671CrossRefGoogle Scholar
  69. Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9:672–677CrossRefGoogle Scholar
  70. Philippe H, Douady CJ (2003) Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6:498–505CrossRefGoogle Scholar
  71. Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17CrossRefGoogle Scholar
  72. Poole A, Jeffares A, Penny D (1999) Early evolution: prokaryotes, the new kids in the blocks. Bioessays 21:880–889CrossRefGoogle Scholar
  73. Raz E, van Luenen GAM (1997) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr Biol 7:82–88CrossRefGoogle Scholar
  74. Ribeiro S, Golding GB (1998) The mosaic nature of the eukaryotic nucleus. Mol Biol Evol 15:779–788Google Scholar
  75. Riddle NC, Birchler JA (2003) Effects of diverged regulatory hierarchies I allopolyploids and species hybrids. Trends Genet 19:597–600CrossRefGoogle Scholar
  76. Rivera MC, Lake JA (2004) The ring of life provides evidence for a genomic fusion origin of eukaryotes. Nature 431:152–155CrossRefGoogle Scholar
  77. Robinson R (2005) Jump-starting a cellular world: Investigating the origin of life, from soup to networks. Plos Biol 3:396CrossRefGoogle Scholar
  78. Seehausen O (2004) Hybridization and adaptative radiation. Trends Ecol Evol 19:198–207CrossRefGoogle Scholar
  79. Stauber M, Jäckle H, Schmidt-Ott U (1999) The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. P Natl Acad Sci USA 96:3786–3789CrossRefGoogle Scholar
  80. Szathmary E (2004) From biological analysis to synthetic biology. Curr Biol 14:145–146CrossRefGoogle Scholar
  81. Troland LT (1914) The chemical origin and regulation of life. Monist 24:92–133Google Scholar
  82. Woese C (1998) The universal ancestor. P Natl Acad Sci USA 95:6854–6859CrossRefGoogle Scholar
  83. Wolf YI, Aravind L, Grishin NV, Koonin EV (1999) Evolution of aminoacyl-tRNA-synthases. Analysis of unique domain architectures and phylogenetic trees reveal a complex history of horizontal gene transfer events. Genome Res 9:689–710Google Scholar
  84. Wright MC, Joyce GF (1997) Continuous in vitro evolution of catalytic function. Science 276:614–617CrossRefGoogle Scholar
  85. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–302CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Departamento Biodiversidad y Biologia EvolutivaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
  2. 2.Department of AnthropologyGeorge Washington University WashingtonUSA

Personalised recommendations