Biology & Philosophy

, Volume 22, Issue 3, pp 351–368 | Cite as

The Role of Intuitive Ontologies in Scientific Understanding – the Case of Human Evolution

  • Helen De CruzEmail author
  • Johan De Smedt


Psychological evidence suggests that laypeople understand the world around them in terms of intuitive ontologies which describe broad categories of objects in the world, such as ‘person’, ‘artefact’ and ‘animal’. However, because intuitive ontologies are the result of natural selection, they only need to be adaptive; this does not guarantee that the knowledge they provide is a genuine reflection of causal mechanisms in the world. As a result, science has parted ways with intuitive ontologies. Nevertheless, since the brain is evolved to understand objects in the world according to these categories, we can expect that they continue to play a role in scientific understanding. Taking the case of human evolution, we explore relationships between intuitive ontological and scientific understanding. We show that intuitive ontologies not only shape intuitions on human evolution, but also guide the direction and topics of interest in its research programmes. Elucidating the relationships between intuitive ontologies and science may help us gain a clearer insight into scientific understanding.

Key words

Essentialism Folk biology Folk physics Folk psychology Human evolution Human–nonhuman distinction Intuitive ontologies Palaeoanthropology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



An earlier version of this paper was presented by one of the authors (HDC) at the Philosophical Perspectives on Scientific Understanding Conference, held at the Vrije Universiteit Amsterdam, 25–27 August 2005. We wish to thank members of the audience for their useful comments, as well as Bill Brewer, Hasok Chang, Jean Paul Van Bendegem and Johan Braeckman for suggestions to an earlier draft. We would also like to thank Kim Sterelny and an anonymous referee whose comments substantially helped us to clarify and further develop some of the arguments presented in this paper. This research was funded in part by grant OZR916BOF from the Free University of Brussels.


  1. Ahn W., Kalish C., Gelman S.A., Medin D.L., Luhmann C., Atran S., Coley J.D. and Shafto P. (2001) Why essences are essential in the psychology of concepts. Cognition 82: 59–69CrossRefGoogle Scholar
  2. Anggoro F.K., Waxman S.R. and Medin D.L. 2005. The effects of naming practices on children’s understanding of living things. In: Bara B.G., Barsalou L. and Bucciarelli M. (eds), Proceedings of the XXVII Annual Conference of the Cognitive Science Society. Lawrence Erlbaum, Mahwah, New Jersey, pp. 139–144.Google Scholar
  3. Atran S. (1998) Folk biology and the anthropology of science: cognitive universals and cultural particulars. Behav. Brain. Sci. 21: 547–569CrossRefGoogle Scholar
  4. Atran S., Medin D., Ross N. (2004) Evolution and devolution of knowledge: a tale of two biologies. J. Roy. Anthropol. Inst. (N.S.) 10: 395–420CrossRefGoogle Scholar
  5. Bonatti L., Frot E., Zangl R., Mehler J. (2002) The human first hypothesis: identification of conspecifics and individuation of objects in the young infant. Cognit. Psychol. 44: 388–426CrossRefGoogle Scholar
  6. Boyer P. (2000) Natural epistemology or evolved metaphysics? Developmental evidence for early-developed, intuitive, category-specific, incomplete, and stubborn metaphysical presumptions. Philos. Psychol. 13: 277–297CrossRefGoogle Scholar
  7. Brown P., Sutikna T., Morwood M.J., Soejono R.P., Jatmiko, Saptomo E.W. and Due R.A. 2004. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431:1055–1061.Google Scholar
  8. Brunet M., Guy F., Pilbeam D., Mackaye H.T., Likius A., Ahounta D., Beauvilain A., Blondel C., Bocherens H., Boisserie J.-R., De Bonis L., Coppens Y., Dejax J., Denys C., Duringer P., Eisenmann V., Fanone G., Fronty P., Geraads D., Lehmann T., Lihoreau F., Louchart A., Mahamat A., Merceron G., Mouchelin G., Otero O., Campomanes P.P., Ponce De León M., Rage J.-C., Sapanet M., Schuster M., Sudre J., Tassy P., Valentin X., Vignaud P., Viriot L., Zazzo A., Zollikofer C. (2002) A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418: 145–151CrossRefGoogle Scholar
  9. Burkart J. and Heschl A. 2005. Do nonhuman primates understand the mentalistic content of seeing? Paper Presented at the Annual Conference of the Cognitive Science Society, Stresa, Italy.Google Scholar
  10. Capitani E., Laiacona M., Mahon B.Z., Caramazza A. (2003) What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cognit. Neuropsychol. 20: 213–261CrossRefGoogle Scholar
  11. Caramazza A., Shelton J.R. (1998) Domain-specific knowledge systems in the brain: the animate–inanimate distinction. J. Cognit. Neurosci. 10: 1–34CrossRefGoogle Scholar
  12. Cela-Conde C.J., Ayala F.J. (2003) Genera of the human lineage. Proc. Natl. Acad. Sci. USA 100: 7684–7689CrossRefGoogle Scholar
  13. Darwin C. (1871) The Descent of Man, and Selection in Relation to Sex. John Murray, LondonGoogle Scholar
  14. Dart R.A. (1925) Australopithecus africanus: the man-ape of South Africa. Nature 115: 195–199Google Scholar
  15. de Waal F.B.M. (1999) Cultural primatology comes of age. Nature 399: 635–636CrossRefGoogle Scholar
  16. Diamond J. (1992) The Rise and Fall of the Third Chimpanzee. How our Animal Heritage Affects the Way we Live. Vintage, LondonGoogle Scholar
  17. Dobzhansky T. (1944) On species and races of living and fossil man. Am. J. Phys. Anthropol. 2:251–265CrossRefGoogle Scholar
  18. Dupré J. (1999) Are whales fish? In: Medin D.L., Atran S. (eds) Folkbiology. MIT Press, Cambridge, Ma. and London, pp. 461–476Google Scholar
  19. Farah M.J., Rabinowitz C. (2003) Genetic and environmental influences on the organisation of semantic memory in the brain: Is ‘living things’ an innate category? Cognit. Neuropsychol. 20:401–408CrossRefGoogle Scholar
  20. Flombaum J.I., Santos L.R. (2005) Rhesus monkeys attribute perceptions to others. Curr. Biol. 15: 447–452CrossRefGoogle Scholar
  21. Foley R. (1987) Another Unique Species: Patterns in Human Evolutionary Ecology. Longman, HarlowGoogle Scholar
  22. Foley R. (2001) In the shadow of the modern synthesis? Alternative perspectives on the last fifty years of Paleoanthropology. Evol. Anthropol. 10: 5–14CrossRefGoogle Scholar
  23. Frith C.D., Frith U. (1999) Interacting minds–a biological basis. Science 286: 1692–1695CrossRefGoogle Scholar
  24. Gabunia L., Vekua A., Lordkipanidze D., Swisher C.C., Ferring R., Justus A., Nioradze M., Tvalchrelidze M., Antón S.C., Bosinski G., Jöris O., de Lumley M.-A., Majsuradze G., Moukhelishvili A. (2000) Earliest pleistocene hominid cranial remains of georgia: taxonomy, geological setting, and age. Science 288: 1019–1025CrossRefGoogle Scholar
  25. Gelman S.A. (2004) Psychological essentialism in children. Trend. Cognit. Sci. 8: 404–409CrossRefGoogle Scholar
  26. Gelman S.A., Coley J.D., Gottfried G.M. (1994) Essentialist beliefs in children: the acquisition of concepts and theories. In: Hirschfeld L.A., Gelman S.A. (eds) Mapping the Mind. Domain Specificity in Cognition and Culture. Cambridge University Press, Cambridge, pp. 341–365Google Scholar
  27. Gelman S.A., Wellman H.M. (1991) Insides and essences: early understandings of the non-obvious. Cognition 38: 213–244CrossRefGoogle Scholar
  28. Gigerenzer G., Goldstein D.G. (1996) Reasoning the fast and frugal way: models of bounded rationality. Psychol. Rev. 103:650–669CrossRefGoogle Scholar
  29. Gould S.J. (2002) The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press, Cambridge, Ma. and LondonGoogle Scholar
  30. Gu J., Gu X. (2003) Induced gene expression in human brain after the split from chimpanzee. Trend. Genet. 19: 63–65CrossRefGoogle Scholar
  31. Haile-Selassie Y., Suwa G., White T.D. (2004) Late miocene teeth from Middle Awash, Ethiopia, and Early Hominid Dental Evolution. Science 303: 1503–1505CrossRefGoogle Scholar
  32. Hare B., Call J., Tomasello M. (2001) Do chimpanzees know what conspecifics know? Anim. Behav. 61: 139–151CrossRefGoogle Scholar
  33. Hume D. 1739–1740 [2001]. A Treatise of Human Nature (edited by Norton D.F. and Norton M.J.). Oxford university press, Oxford.Google Scholar
  34. Huxley T.H. (1863) Evidences as to Man’s Place in Nature. Williams and Norgate, LondonGoogle Scholar
  35. Ingman M., Kaessmann H., Pääbo S., Gyllensten U. (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408: 708–713CrossRefGoogle Scholar
  36. King M.-C., Wilson A.C. (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107–116CrossRefGoogle Scholar
  37. Leakey M.G., Spoor F., Brown F.H., Gathogo P.N., Kiarie C., Leakey L.N., McDougall I. (2001) New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature 410: 433–440CrossRefGoogle Scholar
  38. Leakey R.E.F., Walker A.C. (1976) Australopithecus, Homo erectus, and the single species hypothesis. Nature 261: 572–574CrossRefGoogle Scholar
  39. Marcus G. (2004) The Birth of the Mind. How a Tiny Number of Genes Creates the Complexities of Human Thought. Basic Books, New YorkGoogle Scholar
  40. Marks J. (2002) What it Means to be 98% Chimpanzee. Apes, People, and their Genes. University of California Press, Berkeley and Los AngelesGoogle Scholar
  41. Martin A., Weisberg J. (2003) Neural foundations for understanding social and mechanical concepts. Cognit. Neuropsychol. 20: 575–587CrossRefGoogle Scholar
  42. Mayr E. (1950) Taxonomic categories in fossil hominids. Cold Spring Harb. Symp. Quant. Biol. 15: 109–117Google Scholar
  43. McCloskey M. (1983) Intuitive physics. Sci. Am. 249: 114–122CrossRefGoogle Scholar
  44. McCloskey M., Caramazza A., Green B. (1980) Curvilinear motion in the absence of external forces: naïve beliefs about the motion of objects. Science 210: 1139–1141CrossRefGoogle Scholar
  45. Medin D., Ortony A. (1989) Psychological essentialism. In: Vosniadou S., Ortony A. (eds) Similarity and analogical reasoning. Cambridge University Press, Cambridge, pp. 179–195Google Scholar
  46. Onishi K.H., Baillargeon R. (2005) Do 15-month-old infants understand false beliefs? Science 308: 255–258CrossRefGoogle Scholar
  47. Poling D.A., Evans E.M. (2004) Are dinosaurs the rule or the exception? Developing concepts of death and extinction. Cognit. Dev. 19: 363–383CrossRefGoogle Scholar
  48. Povinelli D.J. (2000) The minds of humans and apes are different outcomes of an evolutionary experiment. In: Fitzpatrick S., Bruer J. (eds) Carving our Destiny: Scientific Research Faces a New Millennium. National Academy of Sciences and John Henry Press, Washington, D.C., pp. 1–40Google Scholar
  49. Povinelli D.J., Vonk J. (2003) Chimpanzee minds: suspiciously human? Trend. Cognit. Sci. 7: 157–160CrossRefGoogle Scholar
  50. Sarich V.M., Wilson A.C. (1967) Immunological time scale for hominid evolution. Science 158: 1200–1203CrossRefGoogle Scholar
  51. Semaw S., Renne P., Harris J.W.K., Feibel C.S., Bernor R.L., Fesseha N., Mowbray K. (1997) 2.5-million-year-old stone tools from Gona, Ethiopia. Nature 385: 333–336CrossRefGoogle Scholar
  52. Senut B., Pickford M., Gommery D., Mein P., Cheboi K., Coppens Y. (2001) First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus de l’Académie des Sciences–Series IIA 332: 137–144Google Scholar
  53. Shultz T.R. (1982) Causal reasoning in the social and nonsocial realms. Can. J. Behav. Sci. 14: 307–322Google Scholar
  54. Simpson G.G. (1950) Some principles of historical biology bearing on human origins. Cold Spring Harb. Symp. Quant. Biol. 15: 55–66Google Scholar
  55. Spelke E.S., Phillips A., Woodward A.L. (1995) Infants’ knowledge of object motion and human action. In: Sperber D., Premack D., Premack A.J. (eds) Causal Cognition. A Multidisciplinary Debate. Clarendon Press, Oxford, pp. 44–78Google Scholar
  56. Stamos D.N. (2005) Pre-Darwinian taxonomy and essentialism – a reply to Mary Winsor. Biol. Philos. 20: 79–96CrossRefGoogle Scholar
  57. Swisher III C.C., Curtis G.H., Jacob T., Getty A.G., Suprijo A., Widiasmoro (1994) Age of the earliest known Hominids in Java, Indonesia. Science 263: 1118–1121CrossRefGoogle Scholar
  58. Tattersall I. (2000) Paleoanthropology: the last half-century. Evol. Anthropol. 9: 2–15CrossRefGoogle Scholar
  59. Vosniadou S. (1994) Universal and culture-specific properties of children’s mental models of the earth. In: Hirschfeld L.A., Gelman S.A. (eds) Mapping the Mind. Domain Specificity in Cognition and Culture. Cambridge University Press, Cambridge, pp. 412–430Google Scholar
  60. Waxman S. (2005) Why is the concept ‘living thing’ so elusive? Concepts, languages, and the development of folkbiology. In: Ahn W.-K., Goldstone R.L., Love B.C., Markman A.B., Wolff P. (eds) Categorization Inside and Outside the Laboratory. Essays in Honor of Douglas L. Medin. American Psychological Association, Washington, DC., pp. 49–67CrossRefGoogle Scholar
  61. Wegner D.M. (2003) The mind’s self-portrait, Ann. NY Acad. Sci. 1001: 1–14CrossRefGoogle Scholar
  62. White T.D. (1995) African omnivores: global climatic change and plio-pleistocene hominids and suids. In: Vrba E.S., Denton G.H., Partridge T.C., Burckle L.H. (eds) Paleoclimate and Evolution, with Emphasis on Human Origins. Yale University Press, New Haven and London, pp. 369–384Google Scholar
  63. White T.D., Suwa G., Asfaw B. (1995) Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 375: 88CrossRefGoogle Scholar
  64. Wolpoff M.H., Hawks J., Caspari R. (2000) Multiregional, not multiple origins. Am. J. Phys. Anthropol. 112: 129–136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Centre for Logic and Philosophy of ScienceFree University of BrusselsBrusselsBelgium
  2. 2.Department of Philosophy and Moral ScienceGhent UniversityGhentBelgium

Personalised recommendations