Biology & Philosophy

, Volume 22, Issue 3, pp 415–428 | Cite as

Weismann Rules! OK? Epigenetics and the Lamarckian temptation

  • David HaigEmail author


August Weismann rejected the inheritance of acquired characters on the grounds that changes to the soma cannot produce the kind of changes to the germ-plasm that would result in the altered character being transmitted to subsequent generations. His intended distinction, between germ-plasm and soma, was closer to the modern distinction between genotype and phenotype than to the modern distinction between germ cells and somatic cells. Recently, systems of epigenetic inheritance have been claimed to make possible the inheritance of acquired characters. I argue that the sense in which these claims are true does not challenge fundamental tenets of neo-Darwinism. Epigenetic inheritance expands the range of options available to genes but evolutionary adaptation remains the product of natural selection of ‘random’ variation.


Acquired characters Epigenetics Lamarckism Neo-Darwinism Peloric Weismann 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett-Baker P.E., Wikowski J. and Burke D.T. (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062Google Scholar
  2. Cubas P. (2004) Floral zygomorphy, the recurring evolution of a successful trait. BioEssays 26:1175–1184CrossRefGoogle Scholar
  3. Cubas P., Vincent C. and Coen E. (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161CrossRefGoogle Scholar
  4. Dawkins R. (1987) The Blind Watchmaker. W. W. Norton, New YorkGoogle Scholar
  5. Dennett D.C. (1995) Darwin’s Dangerous Idea. Simon & Schuster, New YorkGoogle Scholar
  6. de Vries H. 1910. The mutation theory. Experiments and observations on the origin of species in the vegetable kingdom, Vol. II. The origin of varieties by mutation. (translated by J.B. Farmer and A.D. Darbishire). Open Court Publishing, ChicagoGoogle Scholar
  7. Gustafsson Å. (1979) Linnaeus’ Peloria: the history of a monster. Theor. Appl. Genet. 54:241–248CrossRefGoogle Scholar
  8. Haig D. (1997) Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc. R. Soc. Lond. B 264:1657–1662CrossRefGoogle Scholar
  9. Haig D. (2004) The (dual) origin of epigenetics. Cold Spring Harb. Symp. Quant. Biol. 69:67–70CrossRefGoogle Scholar
  10. Jablonka E. and Lamb M.J. (1989) The inheritance of acquired epigenetic variations. J. Theoret. Biol. 139:69–83Google Scholar
  11. Jablonka E. and Lamb M.J. (1995) Epigenetic Inheritance and Evolution. The Lamarckian Dimension. Oxford University Press, OxfordGoogle Scholar
  12. Jablonka E. and Lamb M.J. (2002) The changing concept of epigenetics. Ann. N. Y. Acad. Sci. 981:82–96CrossRefGoogle Scholar
  13. Kirschner M.W. and Gerhart J.C. 2005. The plausibility of life. Yale University Press, New HavenGoogle Scholar
  14. Luo D., Carpenter R., Vincent C., Copsey L. and Coen E. (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799CrossRefGoogle Scholar
  15. Monk M. (1995) Epigenetic programming of differential gene expression in development and evolution. Dev. Genet. 17:188–197CrossRefGoogle Scholar
  16. Nanney D.L. (1958) Epigenetic control systems. Proc. Natl. Acad. Sci. USA 44:712–717CrossRefGoogle Scholar
  17. Nutting C.C. (1892) What is an “acquired character?”. Am. Nat. 26:1009–1013CrossRefGoogle Scholar
  18. Plass C. and Soloway P.D. (2002) DNA methylation, imprinting and cancer. Eur. J. Hum. Genet. 10:6–16CrossRefGoogle Scholar
  19. Romanes G.J. (1888) Lamarckism versus Darwinism. Nature 38:413Google Scholar
  20. Spencer H. (1893) Professor Weismann’s theories. Contemp. Rev. 63:742–760Google Scholar
  21. Strasburger E. (1894) The periodic reduction of the number of the chromosomes in the life-history of living organisms. Ann. Bot. 8: 281–316Google Scholar
  22. Strasburger E. (1906) Typische und allotypische Kernteilung. Ergebnisse und Erörterungen. Jahrbücher für wissentschaftliche Botanik 42:1-71Google Scholar
  23. Tucker K.L., Beard C., Dausman J., Jackson-Grusby L., Laird P.W., Lei H., Li E. and Jaenisch R. (1996) Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of unimprinted genes. Genes Dev. 10:1008–1020CrossRefGoogle Scholar
  24. Varmuza S. (2003a) Epigenetics and the renaissance of heresy. Genome 46:963–967CrossRefGoogle Scholar
  25. Varmuza S. (2003b) Reply to the comment by R. S. Singh on “Rehabilitation of Lamarck and Goldschmidt or renaissance of heresy”. Genome 46:973CrossRefGoogle Scholar
  26. Waddington C.H. (1942a) The epigenotype. Endeavour 1:18–20Google Scholar
  27. Waddington C.H. (1942b) Canalization of development and the inheritance of acquired characters. Nature 150:563–565Google Scholar
  28. Waddington C.H. (1953) The Strategy of the Genes. George Allen & Unwin, LondonGoogle Scholar
  29. Waddington C.H. (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183:1654–1655CrossRefGoogle Scholar
  30. Waddington C.H. (1968) The evolutionary process. In: Lewontin R.C. (eds) Population biology and evolution. Syracuse University Press, Syracuse, New York, pp. 37–45Google Scholar
  31. Waterland R.A. and Jirtle R.L. (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23:5293–5300CrossRefGoogle Scholar
  32. Weismann A. (1891) Essays upon Heredity and Kindred Biological Problems, Vol. 1. Clarendon Press, OxfordGoogle Scholar
  33. Weismann A. (1893) The all-sufficiency of natural selection. A reply to Herbert Spencer. Contemp. Rev. 64:309–338Google Scholar
  34. Weismann A. 1904. The Evolution Theory. Vol. I. (J.A. Thomson and M.R. Thomson, translators). Edward Arnold, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations