Biology and Philosophy

, Volume 20, Issue 5, pp 1041–1050 | Cite as

The strategy concept and John Maynard Smith’s influence on theoretical biology

  • Manfred D. Laubichler
  • Edward H. Hagen
  • Peter Hammerstein
Article

Abstract

Here we argue that the concept of strategies, as it was introduced into biology by John Maynard Smith, is a prime illustration of the four dimensions of theoretical biology in the post-genomic era. These four dimensions are: data analysis and management, mathematical and computational model building and simulation, concept formation and analysis, and theory integration. We argue that all four dimensions of theoretical biology are crucial to future interactions between theoretical and empirical biologists as well as with philosophers of biology.

Keywords

Evolutionary developmental biology Evolutionary stable strategy Game theory Theoretical biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal A.A., Laforsch C. et al. (1999). Transgenerational induction of defenses in animals and plants. Nature 401: 60–63CrossRefGoogle Scholar
  2. Amundson R.(2005). The Changing Rule of the Embryo in Evolutionary Biology: Structure and Synthesis. Cambridge University Press, New YorkGoogle Scholar
  3. Axelrod R.M. (1990). The Evolution of Cooperation. Penguin Books, London New YorkGoogle Scholar
  4. Axelrod, R.M. (1997). The Complexity of Cooperation: Agent-based Models of Competition and Collaboration. Princeton University Press, Princeton N.J.Google Scholar
  5. Bicchieri C., Jeffrey R.C. et al. (1999). The Logic of Strategy. Oxford University Press, New YorkGoogle Scholar
  6. Bonner J.T. (2000). First Signals: The Evolution of Multicellular Development. Princeton University Press, PrincetonGoogle Scholar
  7. Bowles S. (2004). Microeconomics: Behavior, Institutions, and Evolution. Princeton University Press, New York Princeton N.J. Russell SageGoogle Scholar
  8. Brooks J.L. (1965). Predation and relative helmet size in cyclomorphic daphnia. Proc. Natl. Acad. Sci. 53: 119–126PubMedCrossRefGoogle Scholar
  9. Charlesworth B. (2004a). Anecdotal, historical and critical commentaries on genetics. John Maynard Smith: January 6, 1920–April 19, 2004. 168: 1105–1109Google Scholar
  10. Charlesworth B. (2004b). John Maynard Smith (1920–2004). Curr. Biol. 14(10): R365–R366CrossRefGoogle Scholar
  11. Gigerenzer G., Selten R. (2001). Bounded Rationality: The Adaptive Toolbox. MIT Press, Cambridge MassGoogle Scholar
  12. Gintis H. (2000). Game Theory Evolving a Problem-centered Introduction to Modeling Strategic Behavior. Princeton University Press, Princeton N.J.Google Scholar
  13. Grafen A. (2000). Developments of the price equation and natural selection under uncertainty. Proc. R. Soc. Lon. B 267(1449): 1223–1227CrossRefGoogle Scholar
  14. Hagen E.H. and Hammerstein P. (2005). Evolutionary biology and the strategic view of onotogeny: genetic strategies provide robsutness and flexibility in the life course. Res. Hum. Dev. 2: 87–101Google Scholar
  15. Hall B.K. (1998). Evolutionary Developmental Biology. Chapman & Hall, London, New YorkGoogle Scholar
  16. Hammerstein P. 1996. Darwinian adaptation, population genetics and streetcar theory of evolution. J. Math. Biol. 34: 511–532Google Scholar
  17. Hammerstein P. (2003). Genetic and Cultural Evolution of Cooperation. MIT Press in cooperation with Dahlem University Press, Cambridge MassGoogle Scholar
  18. Hammerstein P. and Hagen E.H. 2005. The second wave of evolutionary economics in biology. Trends. Ecol. Evol. 20(11): 604–609Google Scholar
  19. Hofbauer J., Sigmund K.,(1988). The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection. Cambridge University Press, Cambridge [England], New YorkGoogle Scholar
  20. Hofbauer J. and Sigmund K.,(1998). Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, New York, NYGoogle Scholar
  21. Karlin S. (2005). John Maynard Smith and Recombination. Theor. Popul. Biol. 68(1): 3–5CrossRefPubMedGoogle Scholar
  22. Komarova N.L. (2004). Replicator-mutator equation, universality property and population dynamics of learning. J. Theor. Biol. 230(2): 227–239CrossRefPubMedGoogle Scholar
  23. Laubichler M.D. (2005). A constrained view of Evo Devo’s Roots. Science 309: 1019–1020CrossRefGoogle Scholar
  24. Maynard Smith J. 1958. The Theory of Evolution, [Harmondsworth, Middlesex], Penguin Books.Google Scholar
  25. Maynard Smith J. (1968). Mathematical Ideas in Biology. Cambridge U.P., LondonGoogle Scholar
  26. Maynard Smith J. (1974). Models in Ecology. University Press, Cambridge [Eng.]Google Scholar
  27. Maynard Smith J. (1978). The Evolution of Sex. Cambridge [Eng.], Cambridge University Press, New YorkGoogle Scholar
  28. Maynard Smith J. (1982). Evolution and the Theory of Games. Cambridge University Press, Cambridge New YorkGoogle Scholar
  29. Maynard Smith J. (1988). Games, Sex, and Evolution. Harvester-Wheatsheaf, New YorkGoogle Scholar
  30. Maynard Smith J. (1989). Evolutionary Genetics. Oxford University Press, Oxford, New YorkGoogle Scholar
  31. Maynard Smith J. (1999). Shaping Life: Genes, Embryos, and Evolution. Yale University Press, New HavenGoogle Scholar
  32. Maynard Smith J. and E. Szathmâary (1995). The Major Transitions in Evolution. W.H. Freeman Spektrum, Oxford New YorkGoogle Scholar
  33. Michod R.E. 2005. John Maynard Smith. Annu. Rev. Genet. 39: 1–8Google Scholar
  34. Noe R., J.A.R.M.v. Hooff et al. (2001). Economics in Nature: Social Dilemmas, Mate Choice, and Biological Markets. Cambridge University Press, Cambridge, UK, New York, NYGoogle Scholar
  35. Page K.M. and Nowak M.A. (2002). Unifying evolutionary dynamics. J. Theor. Biol. 219(1): 93–98PubMedGoogle Scholar
  36. Price G.R. (1970). Selection and covariance. Nature 227(5257):520–521CrossRefGoogle Scholar
  37. Raff R.A. (1996). The Shape of Life: Genes, Development, and the Evolution of Animal Form. University of Chicago Press, ChicagoGoogle Scholar
  38. Selten R. (1991). Game Equilibrium Models. Springer Verlag, Berlin New YorkGoogle Scholar
  39. Sigmund K. (2005). John Maynard Smith and evolutionary game theory. Theor. Popul. Biol. 68(1): 7–10CrossRefPubMedGoogle Scholar
  40. Skyrms B. (1996). Evolution of the Social Contract. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  41. Skyrms B. (2004). The Stag Hunt and the Evolution of Social Structure. Cambridge University Press, Cambridge, UK, New YorkGoogle Scholar
  42. Spratt B.G. (2004). John Maynard Smith (1920–2004). Infect. Genet. Evol. 4(4): 297–300PubMedGoogle Scholar
  43. Szathmary E. and Hammerstein P. (2004). Obituary: John Maynard Smith (1920–2004). Nature 429(6989): 258–259CrossRefGoogle Scholar
  44. van Veelen M. 2005. On the use of the price equation. J. Theor. Biol. 237(4): 412–426Google Scholar
  45. Von Neumann J., Morgenstern O. (1953). Theory of Games and Economic Behavior. Princeton University Press, PrincetonGoogle Scholar
  46. Wagner G.P. (2000). What is the promise of developmental evolution? Part I: why is developmental biology necessary to explain evolutionary innovations? J. Exp. Zool. 288(2): 95–98CrossRefPubMedGoogle Scholar
  47. Wagner G.P. (2001). What is the promise of developmental evolution? Part II: a causal explanation of evolutionary innovations may be impossible. J. Exp. Zool. 291(4): 305–309CrossRefPubMedGoogle Scholar
  48. Wagner G.P. and Larsson H.C.,(2003). What is the promise of developmental evolution? III. The crucible of developmental evolution. J. Exp. Zool. B: Mol. Dev. Evol. 300(1): 1–4CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Manfred D. Laubichler
    • 1
  • Edward H. Hagen
    • 2
  • Peter Hammerstein
    • 2
  1. 1.School of Life Sciences, Center for Social Complexity and Dynamics, Center for Biology and SocietyArizona State UniversityTempeUSA
  2. 2.Institute for Theoretical BiologyHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations