Biology and Philosophy

, Volume 20, Issue 5, pp 1027–1040

John Maynard Smith and the natural philosophy of␣adaptation

Article

Abstract

One of the most remarkable aspects of John Maynard Smith’s work was the fact that he devoted time both to doing science and to reflecting philosophically upon its methods and concepts. In this paper I offer a philosophical analysis of Maynard Smith’s approach to modelling phenotypic evolution in relation to three main themes. The first concerns the type of scientific understanding that ESS and optimality models give us. The second concerns the causal–historical aspect of stability analyses of adaptation. The third concerns the concept of evolutionary stability itself. Taken together, these three themes comprise what I call the natural philosophy of adaptation.

Keywords

Adaptation ESS Evolutionary game theory Evolutionary stability Optimality Phenotypic evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams P.A., Matsuda H., Harada Y. (1993). Unstable fitness maxima and stable fitness minima in the evolution of continuous traits. Evol. Ecol. 7:465–487CrossRefGoogle Scholar
  2. Abrams P. (2001a). Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: an assessment of three methods. Ecol. Letts 4:166–175CrossRefGoogle Scholar
  3. Abrams P. 2001b. Adaptation, optimality models and tests of adaptive scenarios. In: Orzack S.H. and Sober E. (eds), Adaptationism and Optimality, Cambridge University Press, pp. 273–302Google Scholar
  4. Amundson R. 1996, Historical development of the concept of adaptation. In: Rose M. R. and Lauder G. (eds), Adaptation, Academic Press, pp. 11–53Google Scholar
  5. Brandon R. (1990). Adaptation and Environment. Princeton University Press, Princeton, NJGoogle Scholar
  6. Cartwright N. (1983). How the Laws of Physics Lie. Oxford University Press, New YorkGoogle Scholar
  7. Christiansen F.B. (1991). On conditions for evolutionary stability for a continuously varying character. Am. Na. 138:37–50CrossRefGoogle Scholar
  8. Darwin C. 1859. On the Origin of Species by Means of Natural Selection, Edited by J.W. Burrow, Penguin Classics, 1968Google Scholar
  9. Day T., Taylor P. (2003). Evolutionary dynamics and stability in discrete and continuous games. Evol. Ecol. Res. 5:605–613Google Scholar
  10. Day, T. 2005. Modelling the ecological context of evolutionary change: déjà vu or something new? In: Cuddington K. and Beisner E. (eds), Ecological Paradigms Lost: Routes to Theory Change, Academic PressGoogle Scholar
  11. Eshel I. (1983). Evolutionary and continuous stability. J. Theor. Biol. 103:99–111CrossRefGoogle Scholar
  12. Eshel I. (1996). On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J. Math. Biol. 34:485–510CrossRefPubMedGoogle Scholar
  13. Eshel I., Motro U. (1981). Kin selection and strong evolutionary stability of mutual help. Theor. Popul. Biol. 19:420–433CrossRefPubMedGoogle Scholar
  14. Eshel I., Feldman M. (2001). Optimality and evolutionary stability. In: Orzack S.H., Sober E. (eds), Adaptationism and Optimality. Cambridge University Press, New York, pp. 161–190Google Scholar
  15. Fisher R.A. (1930). The Genetical Theory of Natural Selection. Clarendon Press, OxfordGoogle Scholar
  16. French S., Da Costa N.C.A. (2003). Science and Partial Truth: A Unitary Account to Models and Scientific Reasoning. Oxford University Press, New YorkGoogle Scholar
  17. Godfrey Smith P. (1993). Functions: consensus without unity. Pacif. Philos. Quart. 74: 196–208. Reprinted in Hull D.L. and Ruse M. (eds), 1998, The Philosophy of Biology, Oxford University Press, New York, pp. 280–292Google Scholar
  18. Godfrey-Smith P. (1994). A modern history theory of functions. Nous 28:344–362Google Scholar
  19. Hammerstein P. (1996). Darwinian adaptation, population genetics, and the streetcar theory of evolution. J. Math. Biol. 34:511–532CrossRefPubMedGoogle Scholar
  20. Grafen A. (1991). Modelling in behavioural ecology. In: Krebs J.R., Davies N.B. (eds), Behavioural Ecology, 3rd ed. Blackwell, Oxford, pp. 5–31Google Scholar
  21. Gomulkiewicz R. (1998). Game theory, optimization, and quantitative genetics. In: Dugatkin L.A., Reeve H.K. (eds), Game Theory and Animal Behavior. Oxford University Press, NewYork, pp. 283–303Google Scholar
  22. Hernández M.J., León J.A. (1995). Evolutionary Perturbations of Optimal Life Histories. Evol. Ecol. 9: 478–494CrossRefGoogle Scholar
  23. Hines W.G.S. (1987). Evolutionary stable strategies: a review of basic theory. Theor. Popul. Biol. 31:195–272CrossRefPubMedGoogle Scholar
  24. Hofbauer J. and Sigmund K. 1998. Evolutionary Games and Population Dynamics, Cambridge University PressGoogle Scholar
  25. Hughes R.I.G. 1993. Theoretical explanation. In: French P.A. and Uehling Jr. T. E. (eds), Midwest Studies in Philosophy: Philosophy of Science, Vol. 18, University of Notre Dame Press, pp. 132–153Google Scholar
  26. Kaplan J.M., Pigliucci M. (2001). Genes ‘for’ phenotypes: a modern history view. Biol. Philos. 16:189–213CrossRefGoogle Scholar
  27. Kirkpatrick, M. 1996. Genes and adaptation: a pocket guide to the theory. In: Rose M.R. and Lauder G.V. (eds), Adaptation, Academic Press, pp. 125–146Google Scholar
  28. Levins R. (1970). Fitness and optimization. In: Kojima (eds), Mathematical Topics in Population Genetics. Springer-Verlag, Berlin, pp. 389–400Google Scholar
  29. Maynard Smith J. 1978a. Optimization Theory in Evolution, Annu. Rev. Ecol. Syst. 9: 31–56. Reprinted in Sober E. 1984. (ed.), Conceptual Issues in Evolutionary Biology, MIT Press, Cambridge, MA, pp. 298–315Google Scholar
  30. Maynard Smith J. (1978b). The Evolution of Sex. Cambridge University Press, CambridgeGoogle Scholar
  31. Maynard Smith J. (1979). Game theory and the evolution of behaviour. Proc. Roy. Soc. Lon. B 205: 475–488CrossRefGoogle Scholar
  32. Maynard Smith J. (1982). Evolution and the Theory of Games. Cambridge University Press, CambridgeGoogle Scholar
  33. Maynard Smith J. 1987. How to model evolution. In: J. Dupré (ed.), The Latest on the Best: Essays On Evolution and Optimality, MIT Press, pp. 119–131Google Scholar
  34. Maynard Smith J. (1989). Did Darwin get it Right? Essays on Games, Sex and Evolution. Chapman and Hall, New YorkGoogle Scholar
  35. Maynard Smith J., Price G.R. (1973). The logic of animal conflicts. Nature 246:15–18CrossRefGoogle Scholar
  36. Morgan M., Morrison M. (eds) (1999). Models as Mediators. Cambridge University Press, New YorkGoogle Scholar
  37. Morrison M. (2000). Unifying Scientific Theories: Physical Concepts and Mathematical Structures. Cambridge University Press, New YorkGoogle Scholar
  38. Morrison M. (2002). Modelling populations: Pearson and Fisher on Mendelism and biometry. Brit. J. Philos. Sci. 53:39–60CrossRefGoogle Scholar
  39. Orr H.A. (1998). The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52:935–949CrossRefGoogle Scholar
  40. Orr H.A. (2000). Adaptation and the cost of complexity. Evolution 54:13–20PubMedCrossRefGoogle Scholar
  41. Orr H.A. (2005a). Theories of adaptation: what they do and don’t say. Genetica 123:3–13CrossRefGoogle Scholar
  42. Orr H.A. (2005b). The Genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6:119–127CrossRefGoogle Scholar
  43. Parker G.A. and Hammerstein P. 1985. Game theory and animal behaviour. In: Greenwood P. J., Harvey, Paul H. and Slatkin M. (eds), Evolution: Essays in Honour of John Maynard Smith, Cambridge University Press, pp. 73–94Google Scholar
  44. Plutynski, A. 2004. Explanation in classical population genetics. Philos. Sci. Proceedings Part II: 1201–1215Google Scholar
  45. Reeve H.K., Sherman P.W. (1993). Adaptation and the goals of evolutionary research. Quart. Rev. Biol. 68:1–32CrossRefGoogle Scholar
  46. Shanks N. (ed.), 1998. Idealization IX: Idealization in Contemporary Physics, Poznan Studies in the Philosophy of the Sciences and the Humanities, vol. 63. RodopiGoogle Scholar
  47. Sober E. (1983). Equilibrium explanation. Philos. Stud. 43:201–210CrossRefGoogle Scholar
  48. Suppes P. 1966. A comparison of the meaning and uses of models in mathematics and the empirical sciences. In: H. Freudenthal (ed.), The Concept and the Role of Models in Mathematics and Natural and Social Sciences, D. Reidel, pp. 163–177Google Scholar
  49. Taylor P.D. (1989). Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol. 36:125–143CrossRefGoogle Scholar
  50. Taylor P.D., Jonker L.B. (1978). Evolutionary stable strategies and game dynamics. Math. Biosci. 40:145–156CrossRefGoogle Scholar
  51. Weibull J. (1985). Evolutionary Game Theory. MIT Press, Cambridge, MAGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Facultad de Humanidades y Educación, Escuela de FilosofíaUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations