Biology and Philosophy

, Volume 20, Issue 5, pp 967–987 | Cite as

On the transfer of fitness from the cell to the multicellular organism

Article

Abstract

The fitness of any evolutionary unit can be understood in terms of its two basic components: fecundity (reproduction) and viability (survival). Trade-offs between these fitness components drive the evolution of life-history traits in extant multicellular organisms. We argue that these trade-offs gain special significance during the transition from unicellular to multicellular life. In particular, the evolution of germ–soma specialization and the emergence of individuality at the cell group (or organism) level are also consequences of trade-offs between the two basic fitness components, or so we argue using a multilevel selection approach. During the origin of multicellularity, we study how the group trade-offs between viability and fecundity are initially determined by the cell level trade-offs, but as the transition proceeds, the fitness trade-offs at the group level depart from those at the cell level. We predict that these trade-offs begin with concave curvature in single-celled organisms but become increasingly convex as group size increases in multicellular organisms. We argue that the increasingly convex curvature of the trade-off function is driven by the cost of reproduction which increases as group size increases. We consider aspects of the biology of the volvocine green algae – which contain both unicellular and multicellular members – to illustrate the principles and conclusions discussed.

Key words

Body size Cost of reproduction Evolutionary transitions Fitness Germ–soma specialization Individuality Life-history evolution Multi-level selection Multicellularity Volvox 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell G. (1985). The origin and early evolution of germ cells as illustrated by the Volvocales. In: Halvorson H.O., Monroy A. (eds), The Origin and Evolution of Sex. Alan R. Liss, Inc., New York, pp. 221–256Google Scholar
  2. Benkman C.W. (1993). Adaptation to single resources and the evolution of Crossbill (Loxia) diversity. Ecol. Monogr. 63:305–325CrossRefGoogle Scholar
  3. Benson K.E., Stephens D.W. (1996). Interruptions, tradeoffs, and temporal discounting. Am. Zool. 36:506–517Google Scholar
  4. Blows M.W., Chenoweth S.F., Hine E. (2004). Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. Am. Nat. 163:E329–E340CrossRefGoogle Scholar
  5. Buchheim M.A., McAuley M.A., Zimmer E.A., Theriot E.C., Chapman R.L. (1994). Multiple origins of colonial green flagellates from unicells: evidence from molecular and organismal characters. Mol. Phylogenet. Evol. 3:322–343CrossRefPubMedGoogle Scholar
  6. Buss L.W. (1987). The Evolution of Individuality. Princeton University, Princeton, NJGoogle Scholar
  7. Carriere Y., Roff D.A. (1995). The evolution of offspring size and number - a test of the Smith–Fretwell model in 3 species of crickets. Oecologia (Berlin) 102:389–396CrossRefGoogle Scholar
  8. Charlesworth B., Leon J.A. (1976). The relation of reproductive effort to age. Am. Nat. 110:449–459CrossRefGoogle Scholar
  9. Coleman A.W. (1999). Phylogenetic analysis of ‘Volvocacae’ for comparative genetic studies. Proc. Natl. Acad. Sci. USA 96:13892–13897CrossRefPubMedGoogle Scholar
  10. Damuth J., Heisler I.L. (1988). Alternative Formulations of Multilevel Selection. Biol. Phil. 3:407–430CrossRefGoogle Scholar
  11. Desnitski A.G. (1995). A review on the evolution of development in Volvox–morphological and physiological aspects. Eur. J. Protistol. 31:241–247Google Scholar
  12. Enquist B.J., Niklas K.J. (2001). Invariant scaling relations across tree-dominated communities. Nature (London) 410:655–660CrossRefGoogle Scholar
  13. Fewell J., Page R.E. Jr. (1999). The emergence of division of labour in forced associations of normally solitary ant queens. Evol. Ecol. Res. 1:1–12Google Scholar
  14. Foster K.R., Fortunato A., Strassmann J.E., Queller D.C. (2002). The costs and benefits of being a chimera. Proc. R. Soc. Lond B Biol. Sci. 269:2357–2362CrossRefGoogle Scholar
  15. Hudson R.E., Aukema J.E., Rispe C., Roze D. (2002). Altruism, cheating, and anticheater adaptations in cellular slime molds. The Am. Nat. 160:31–43CrossRefGoogle Scholar
  16. King N., Carroll S.B. (2001). A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc. Natl. Acad. Sci. USA 98:15032–15037CrossRefPubMedGoogle Scholar
  17. Kirk D.L. (1997). The genetic program for germ-soma differentiation in Volvox. Annu. Rev. Genet. 31:359–380CrossRefPubMedGoogle Scholar
  18. Kirk D.L. (1998). Volvox: Molecular-genetic Origins of Multicellularity and Cellular Differentiation. Cambridge University Press, CambridgeGoogle Scholar
  19. Kirk D.L., Moleirinho A., Patuzzi R.B. (1997). Microphonic and DPOAE measurements suggest a micromechanical mechanism for the ‘bounce’ phenomenon following low-frequency tones. Hear. Res. 112:69–86CrossRefPubMedGoogle Scholar
  20. Kisdi E. (2001). Long-term adaptive diversity in Levene-type models. Evol. Ecol. Res. 3:721–727Google Scholar
  21. Koufopanou V. (1994). The evolution of soma in the Volvocales. The Am. Nat. 143:907–931CrossRefGoogle Scholar
  22. Koufopanou V., Bell G. (1993). Soma and germ - an experimental approach using Volvox. Proc. R. Soc. London B. Biol. Sci. 254:107–113CrossRefGoogle Scholar
  23. Lachmann M., Blackstone N.W., Haig D., Kowald A., Michod R.E., Szathmáry E., Werren J.H., Wolpert L. (2003). Group report: cooperation and conflict in the evolution of genomes, cells, and multicellular organisms. In: Hammerstein P. (eds), Genetic and Cultural Evolution of Cooperation. MIT Press, Cambridge MA, pp. 327–356Google Scholar
  24. Larson A., Kirk M.M., Kirk D.L. (1992). Molecular phylogeny of the volvocine flagellates. Mol. Biol. Evol. 9:85–105PubMedGoogle Scholar
  25. Levins R. 1968. Evolution in Changing Environments, Some Theoretical Explorations. Princeton University PressGoogle Scholar
  26. Maynard Smith J.M. (1988). Evolutionary progress and levels of selection. In: Nitecki M.H. (eds), Evolutionary Progress. University of Chicago Press, Chicago, pp. 219–230Google Scholar
  27. Maynard Smith J.M. (1991). A Darwinian view of symbiosis. In: Margulis L., Fester R. (eds), Symbiosis as a Source of Evolutionary Innovation. MIT Press, Cambridge, pp. 26–39Google Scholar
  28. Maynard Smith J.M., Szathmáry E. (1995). The Major Transitions in Evolution. W.H. Freeman, San FranciscoGoogle Scholar
  29. Michod R.E. (1978). Evolution of life histories in response to age-specific mortality factors. Am. Nat. 113:531–550CrossRefGoogle Scholar
  30. Michod R.E. (1996). Cooperation and conflict in the evolution of individuality. II. Conflict mediation. Proc. R. Soc. London B Biol. Sci. 263:813–822CrossRefGoogle Scholar
  31. Michod R.E. (1997a). Cooperation and conflict in the evolution of individuality. I. Multi-level selection of the organism. Am. Nat. 149:607–645CrossRefGoogle Scholar
  32. Michod R.E. (1997b). Evolution of the individual. Am. Nat. 150:S5–S21CrossRefGoogle Scholar
  33. Michod R.E. (1999). Darwinian Dynamics, Evolutionary Transitions in Fitness and Individuality. Princeton University Press, Princeton, NJGoogle Scholar
  34. Michod R.E. (2003). Cooperation and conflict mediation during the origin of multicellularity. In: Hammerstein P. (eds), Genetic and Cultural Evolution of Cooperation. MIT Press, Cambridge, MA, pp. 261–307Google Scholar
  35. Michod R.E., Nedelcu A.M. (2003). Cooperation and conflict during the unicellular-multicellular and prokaryotic–eukaryotic transitions. In: Moya A., Font E. (eds), Evolution: From molecules to ecosystems. Oxford University Press, Oxford, pp. 195–208Google Scholar
  36. Michod R.E., Nedelcu A.M., Roze D. (2003). Cooperation and conflict in the evolution of individuality IV. Conflict mediation and evolvability in Volvox carteri. BioSystems 69:95–114CrossRefPubMedGoogle Scholar
  37. Michod R.E., Roze D. (1997). Transitions in individuality. Proc. R. Soc. London B Biol. Sci. 264:853–857CrossRefGoogle Scholar
  38. Michod R.E., Roze D. (1999). Cooperation and conflict in the evolution of individuality. III. Transitions in the unit of fitness. In: Nehaniv C.L. (eds), Mathematical and Computational Biology: Computational Morphogenesis, Hierarchical Complexity, and Digital Evolution. American Mathematical Society, Providence, Rhode Island, pp. 47–92Google Scholar
  39. Michod R.E., Roze D. (2000). Some aspects of reproductive mode and the origin of multicellularity. Selection 1:97–109CrossRefGoogle Scholar
  40. Michod R.E., Roze D. (2001). Cooperation and conflict in the evolution of multicellularity. Heredity 81:1–7CrossRefGoogle Scholar
  41. Michod R.E., Viossat Y., Solari C.A., Nedelcu A.M. and Hurrand M. 2005. Life history evolution and the origin of multicellularity. J. Theor. Biol. In PressGoogle Scholar
  42. Morgan N.C. (1980). Secondary production. In: Le Cren E.D., Lowe-McConell R.H. (eds), The Functioning of Freshwater Ecosystems, IBP 22. Cambridge University Press, Cambridge, pp. 247–340Google Scholar
  43. Nedelcu A.M., Michod R.E. (2003). Evolvability, modularity, and individuality during the transition to multicellularity in volvocalean green algae. In: Schlosser G., Wagner G.P. (eds), Modularity in development and evolution. University of Chicago Press, Chicago, pp. 466–489Google Scholar
  44. Niklas K.J. (1994). Plant Allometry: The Scaling of Form and Process. University of Chicago Press, Chicago, ILGoogle Scholar
  45. Niklas K.J. (2000). The evolution of plant body plans-A biomechanical perspective. Ann. Bot. 85:411–438CrossRefGoogle Scholar
  46. Niklas K.J., Enquist B.J. (2001). From the Cover: Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc. Natl. Acad. Sci. USA 98:2922–2927CrossRefPubMedGoogle Scholar
  47. Nozaki H., Ohta N., Takano H., Watanabe M.M. (1999). Reexamination of phylogenetic relationships within the colonial volvocales (chlorophyta): an analysis of atpB and rbcL gene sequences. J. Phycol. 35:104–112CrossRefGoogle Scholar
  48. Nozaki H. (2003). Origin and evolution of the genera Pleodorina and Volvox (Volvocales). Biologia 58:425–431Google Scholar
  49. Nozaki H., Misawa K., Kajita T., Kato M., Nohara S., Watanabe M. (2000). Origin and evolution of the colonial Volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. Mol. Phylogenet. Evol. 17:256–268CrossRefPubMedGoogle Scholar
  50. Nozaki H., Misumi O., Kuroiwa T. (2003). Phylogeny of the quadriflagellate Volvocales (Chlorophyceae) based on chloroplast multigene sequences. Mol. Phylogenet. Evol. 29:58–66CrossRefPubMedGoogle Scholar
  51. Nozaki H., Takahara M., Nakazawa A., Kita Y., Yamada T., Takano H., Kawano S., Kato M. (2002). Evolution of rbcL group IA introns and intron open reading frames within the colonial Volvocales (Chlorophyceae). Mol. Phylogenet. Evol. 23:326–338CrossRefPubMedGoogle Scholar
  52. Okasha S. 2006. Multi-level selection and the major transitions in evolution. Proc. Phil. Sci. Assoc. PSA2004 (forthcoming)Google Scholar
  53. Pentecost A. (1983). The distribution of daughter colonies and cell numbers in a natural population of Volvox aureus Ehrenb. Ann. Bot. 52:769–776Google Scholar
  54. Porter K.G. (1977). Plant–animal interface in freshwater ecosystems. Am. Sci. 65:159–170Google Scholar
  55. Queller D.C. (2000). Relatedness and the fraternal major transitions. Phil. Trans. R. Soc. London B Biol. Sci. 355:1647–1655CrossRefGoogle Scholar
  56. Queller D.C., Ponte E., Bozzaro S., Strassmann J.E. (2003). Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science (Washington, D.C.) 299:105–106CrossRefGoogle Scholar
  57. Rausch H., Larsen N., Schmitt R. (1989). Phylogenetic relationships of the green alga Volvox carteri deduced from small-subunit ribosomal RNA comparisons. J. Mol. Evol. 29:255–265CrossRefPubMedGoogle Scholar
  58. Reynolds C.S. (1984). The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, UKGoogle Scholar
  59. Reznick D. (1985). Costs of reproduction - an evaluation of the empirical-evidence. Oikos 44:257–267CrossRefGoogle Scholar
  60. Roff D.A. (2000). Trade-offs between growth and reproduction: an analysis of the quantitative genetic evidence. J. Evol. Biol. 13:434–445CrossRefGoogle Scholar
  61. Roff D.A. (2002). Life History Evolution. Sinauer Assoc, Sunderland, MassGoogle Scholar
  62. Roze D., Michod R.E. (2001). Mutation load, multi-level selection and the evolution of propagule size during the origin of multicellularity. Am. Nat. 158:638–654CrossRefGoogle Scholar
  63. Rueffler C., Van Dooren T.J.M., Metz J.A.J. (2004). Adaptive walks on changing landscapes: Levins’ approach extended. Theor. Popul. Biol. 65:165–178CrossRefPubMedGoogle Scholar
  64. Sato H. (2002). Invasion of unisexuals in hermaphrodite populations of animal-pollinated plants: Effects of pollination ecology and floral size-number trade-offs. Evolution 56:2374–2382PubMedGoogle Scholar
  65. Schaffer W.M. (1974). Selection for optimal life histories: the effects of age structure. Ecology 55:291–303CrossRefGoogle Scholar
  66. Shikano S., Luckinbill L.S., Kurihara Y. (1990). Changes of traits in a bacterial population associated with protozoal predation. Microb. Ecol. 20:75–84CrossRefGoogle Scholar
  67. Shimkets L.J. (1990). Social and developmental biology of the myxobacteria. Microbiol. Rev. 54:473–501PubMedGoogle Scholar
  68. Solari, C. A. 2005. A Hydrodynamics Approach to Fitness in Volvocine Algae. University of Arizona. Ref Type: Thesis/DissertationGoogle Scholar
  69. Solari, C.A., Kessler J.O. and Michod R.E. 2006a. A hydrodynamics approach to the evolution of multicellularity: Flagellar motility and cell differentiation in volvocalean green algae. The American Naturalist In pressGoogle Scholar
  70. Solari C.A., Ganguly S., Kessler J.O., Michod R.E. and Goldstein R.E. 2006b. Multicellularity and the functional interdependence of motility and molecular transport. Proc. Natl. Acad. Sci. USA In pressGoogle Scholar
  71. Solari C.A., Nedelcu A.M., Michod R.E. (2003). Fitness and complexity in volvocalean green algae. In: Lipson H., Antonsson E.K., Koza J.R. (eds), Computational Synthesis, From Basic Building Blocks to High-level Functionality. AAAI Press, Menlo Park, CA, pp. 218–225Google Scholar
  72. Sommer U., Giliwicz Z.M. (1986). Long-range vertical migration of Volvox in tropical Lake Cahora Bassa (Mozambique). Limnol. Oceanogr. 31:650–653CrossRefGoogle Scholar
  73. Stearns S.C. (1992). The Evolution of Life Histories. Oxford University Press, OxfordGoogle Scholar
  74. Strassmann J.E., Zhu Y., Queller D.C. (2000). Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature (London) 408:965–967CrossRefGoogle Scholar
  75. Strohm E., Linsenmair K.E. (2000). Allocation of parental investment among individual offspring in the European beewolf Philanthus triangulum F. (Hymenoptera : Sphecidae). Biol. J. Linn. Soc. 69:173–192CrossRefGoogle Scholar
  76. Takada T., Nakajima H. (1996). The optimal allocation for seed reproduction and vegetative reproduction in perennial plants: An application to the density-dependent transition matrix model. J. Theor. Biol. 182:179–191CrossRefGoogle Scholar
  77. Velicer G.J., Kroos L., Lenski R.E. (2000). Developmental cheating in the social bacterium Myxococcus xanthus. Nature (London) 404:598–601CrossRefGoogle Scholar
  78. West G.B., Brown J.H., Enquist B.J. (1997). A general model for the origin of allometric scaling laws in biology. Science (Washington, D.C.) 276:122–126CrossRefGoogle Scholar
  79. West G.B., Brown J.H., Enquist B.J. (1999). The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science (Washington, D.C.) 284:1677–1679CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations