Biology and Philosophy

, Volume 20, Issue 4, pp 633–671 | Cite as

An Interpretive Review of the Origin of Life Research

  • David Penny
Area review

Abstract

Life appears to be a natural property of matter, but the problem of its origin only arose after early scientists refuted continuous spontaneous generation. There is no chance of life arising ‘all at once’, we need the standard scientific incremental explanation with large numbers of small steps, an approach used in both physical and evolutionary sciences. The necessity for considering both theoretical and experimental approaches is emphasized. After describing basic principles that are available (including the Darwin-Eigen cycle), the search for origins is considered under four main themes. These are the RNA-world hypothesis; potential intermediates between an RNA-world and a modern world via the evolution of protein synthesis and then of DNA; possible alternatives to an RNA-world; and finally the earliest stages from the simple prebiotic systems to RNA. The triplicase/proto-ribosome theory for the origin of the ribosome is discussed where triples of nucleotides are added to a replicating RNA, with the origin of a triplet code well-before protein synthesis begins. The length of the code is suggested to arise from the early development of a ratchet mechanism that overcomes the problem of continued processivity of an RNA-based RNA-polymerase. It is probable that there were precursor stages to RNA with simpler sugars, or just two nucleotides, but we do not yet know of any better alternatives to RNA that were likely to arise naturally. For prebiotic stages (before RNA) a flow-reactor model is suggested to solve metabolism, energy gradients, and compartmentation simultaneously – thus the intense interest in some form of flow reactor. If an autocatalytic cycle could arise in such a system we would be major steps ahead. The most likely physical conditions for the origin of life require further clarification and it is still unclear whether the origin of life is more of an entropy (information) problem (and therefore high temperatures would be detrimental), rather than a kinetic problem (where high temperatures may be advantageous).

Keywords

origin of life RNA world origin of the ribosome Darwin-Eigen cycle flow reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albery, W.J., Knowles, J.R. 1976Evolution of enzyme function and the development of enzyme efficiencyBiochemistry1556315640Google Scholar
  2. Anbar, A.D., Knoll, A.H. 2002Proterozoic ocean chemistry and evolution: a bioinorganic bridge?Science29711371142CrossRefGoogle Scholar
  3. Bada, J.L., Lazcano, A. 2003Prebiotic soup – revisiting the Miller experimentScience300745746CrossRefGoogle Scholar
  4. Bada, J.L., Lazcano, A. 2002Some like it hotbut not the first moleculesScience29619821983CrossRefGoogle Scholar
  5. Bibring, J.-P. Langevin, Y. Poulet, F. Gendrin, A. Gondet, B. Berthe, M. Soufflot, A. Drossart, P. Combes, M. Bellucci, G. Moroz, V. Mangold, N. Schmitt, B. the OMEGA team2004Perennial water ice identified in the south polar cap of MarsNature428627630CrossRefGoogle Scholar
  6. Biebricher, C.K., Gardiner, W.C. 1997Molecular evolution of RNA in vitroBiophys. Chem.66179192CrossRefGoogle Scholar
  7. Boerlijst, M.C., Hogeweg, P. 1995Spatial gradients enhance persistence of hypercyclesPhysica D882939CrossRefGoogle Scholar
  8. Caetano-Anolles, G., Caetano-Anolles, D. 2003An evolutionarily structured universe of protein architectureGenome Res.1315631571CrossRefGoogle Scholar
  9. Camardi, G. 1999Charles Lyell and the uniformity principleBiol. Phil.14537560Google Scholar
  10. Chaput, J.C., Szostak, J.W. 2003TNA synthesis by DNA polymerasesJ. Am. Chem. Soc.12592749275Google Scholar
  11. Chen, I.A., Roberts, R.W., Szostak, J.W. 2004The emergence of competition between model protocellsScience30514741476Google Scholar
  12. Chin, J.W., Cropp, A.T., Anderson, J.C., Mukherji, M., Zhang, Z., Schultz, P.G. 2003An expanded eukaryotic genetic codeScience301964967CrossRefGoogle Scholar
  13. Chinnapen, D.J.-F., Sen, D. 2004A deoxyribozyme that harnesses light to repair thymine dimers in DNAProc. Natl. Acad. Sci. USA1016569Google Scholar
  14. Conway Morris S. 2003. Life's Solutions: Inevitable Humans in a Lonely Universe. Cambridge University Press.Google Scholar
  15. Darwin, C. 1840Voyage of the BeagleJ. MurrayLondonGoogle Scholar
  16. Deamer, D.W., Dworkin, J.P., Sandford, S.A., Bernstein, M.P., Allamandola, L.J. 2002The first cell membranesAstrobiology2371381CrossRefGoogle Scholar
  17. Doudna, J.A., Cech, T.R. 2002The chemical repertoire of ribozymesNature418222228CrossRefGoogle Scholar
  18. Eigen, M. 1992Steps Toward Life: A Perspective on EvolutionOxford University PressOxfordGoogle Scholar
  19. Eigen, M., Schuster, P. 1977The hypercycle: a principle of natural self-organization. Part A: Emergence of the hypercycleNaturwissenschaften64541565CrossRefGoogle Scholar
  20. Ekland, E.H., Bartel, D.P. 1996RNA-catalysed RNA polymerization using nucleoside triphosphatesNature382373376CrossRefGoogle Scholar
  21. Ertem, G. 2004Montmorilloniteoligonucleotides, RNA and the origin of lifeOrigins Life Evol. Biosphere34549570CrossRefGoogle Scholar
  22. Eschenmoser, A. 1999Chemical etiology of nucleic acid structureScience28421182124CrossRefGoogle Scholar
  23. Farley, J. 1977The spontaneous Generation Controversy from Descartes to OparinThe Johns Hopkins University PressBaltimore MDGoogle Scholar
  24. Forterre, P. 1995Thermoreduction, a hypothesis for the origin of prokaryotesC.R. Acad Sci Paris Life Sci.318415422Google Scholar
  25. Forterre, P. 2001Genomics and early cellular evolution: the origin of the DNA worldC.R. Acad Sci. Paris, Life Sci.324110Google Scholar
  26. Forterre, P., Philippe, H. 1999Where is the root or the universal tree of life?BioEssays21871879CrossRefGoogle Scholar
  27. Fox S.W. and Dose K. 1972. Molecular Evolution and the Origin of Life. WH Freeman.Google Scholar
  28. Fredrick, K., Noller, H.F. 2003Catalysis of ribosomal translocation by sparsomycinScience30011591162CrossRefGoogle Scholar
  29. Gardner, P.P., Holland, B.R., Moulton, V., Hendy, M.D., Penny, D. 2003Optimal alphabets for an RNA worldProc. R. Soc. Lond. B27011771182CrossRefGoogle Scholar
  30. Gesteland R.F. and Atkins J.F. 1993. The RNA world. Cold Spring Harbor Laboratory Press.Google Scholar
  31. Glansdorff P. and Prigogine I. 1971. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience.Google Scholar
  32. Gordon, K.H.J. 1995Were RNA replication and translation directly coupled in the RNA (+protein?) world?J. Theor. Biol.173179193CrossRefGoogle Scholar
  33. Grosjean, H., Soll, D.G., Crothers, D.M. 1976Studies of the complex between transfer RNAs with complementary anticodonsJ. Mol. Biol.103499519CrossRefGoogle Scholar
  34. Hanczyc, M.H., Fujikawa, S.M., Szostak, J.W. 2003Experimental models of primitive cellular compartments: encapsulation, growth and divisionScience302618622CrossRefGoogle Scholar
  35. Hoang, L., Fredrick, K., Noller, H.F. 2004Creating ribosomes with an all-RNA 30S subunit P siteProc. Natl Acad. Sci. U.S.A.1011243912443Google Scholar
  36. Hordijk, W., Steel, M.A. 2004Detecting autocatalytic, self-sustaining sets in chemical reaction systemsJ. Theor. Biol.227451461CrossRefGoogle Scholar
  37. Jadhav, V.R., Yarus, M. 2002Coenzymes as ribozymesBiochimie84877888CrossRefGoogle Scholar
  38. Jeffares, D.C., Poole, A.M., Penny, D. 1998Relics from the RNA worldJ. Mol. Evol.461836Google Scholar
  39. Joyce, G.F. 2004Directed evolution of nucleic acid enzymesAnnu. Rev. Bio.73791836Google Scholar
  40. Joyce, G.F. 2002The antiquity of RNA-based evolutionNature418214221CrossRefGoogle Scholar
  41. Lawrence, M.S., Bartel, D.P. 2003Processivity of ribozyme catalyzed RNA polymeraseBiochemistry4287488755CrossRefGoogle Scholar
  42. Levy, M., Miller, S.L. 1998The stability of the RNA bases: Implications for the origin of lifeProc. Natl. Acad. Sci. U.S.A.9579337938Google Scholar
  43. Lynch, M., Conery, J.S. 2003The origins of genome complexityScience30214011404CrossRefGoogle Scholar
  44. Mac Dónaill, D.A., Brocklebank, D. 2003An ab initio quantum mechanical investigation of the error-coding model of nucleotide alphabet compositionMol. Phys.10127552763Google Scholar
  45. Martin, W., Russell, M.J. 2003On the origins of cellsPhil. Trans. R. Soc. Lon. Ser. B3585983Google Scholar
  46. McGinness, K.E., Wright, M.C., Joyce, G.F. 2002Continuous in vitro evolution of a ribozyme that catalyzes three successive nucleotidyl addition reactionsChem. Biol.9585596Google Scholar
  47. Meli, M., Albert-Fournier, B., Maurel, M-C. 2001Recent findings in the modern RNA worldInt. Microbiol.4511Google Scholar
  48. Monnard, P.-A., Apel, C.L., Kanavarioti, A., Deamer, D.W. 2002Effect of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life; Implications for a prebiotic aqueous mediumAstrobiology2139152CrossRefGoogle Scholar
  49. Morowitz H.J. 1992. Beginnings of Cellular life: Metabolism Recapitulates Biogenesis. Yale University Press.Google Scholar
  50. Morowitz, H.J. 1981Phase separation, charge separation and biogenesisBioSystems.144147CrossRefGoogle Scholar
  51. Morowitz, H.J., Kostelnik, J.D., Yang, J., Cody, G.D. 2000The origin of intermediary metabolismProc. Natl. Acad. Sci. USA.9777047708CrossRefGoogle Scholar
  52. Mossel, E, Steel, M 2005Random biochemical networks: the probability of self-sustaining autocatalysisJ. Theor. Biol.233327336CrossRefGoogle Scholar
  53. Moulton, V., Gardner, P.P., Pointon, R.F., Creamer, L.K., Jameson, G.B., Penny, D. 2000RNA folding argues against a hot-start origin of lifeJ. Mol. Evol.51416421Google Scholar
  54. Ninio, J. 1982Molecular Approaches to EvolutionPitmanLondon(Transl. from 1979 French edition).Google Scholar
  55. Novina, C.D., Sharp, P.A. 2004The RNAi revolutionNature430161164CrossRefGoogle Scholar
  56. Orgel, L.E. 2004aPrebiotic chemistry and the origin of the RNA worldCrit. Rev. Bioch. Mol. Biol.3999123Google Scholar
  57. Orgel, L.E. 2004bPrebiotic adenine revisited: eutectics and photochemistryOrigin Life Evol Biosphere34361369CrossRefGoogle Scholar
  58. Orgel, L.E. 1998The origin of life – a review of facts and speculationsTIBS23491495Google Scholar
  59. Oparin, I. 1957The Origin of Life on EarthOliver and BoydEdinburghGoogle Scholar
  60. Penny, D., Phillips, M.J. 2004The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution?Trends Ecol. Evol.19516522Google Scholar
  61. Piccirilli, J.A., Krauch, T., Moroney, S.E., Benner, S.A. 1990Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabetNature3433337CrossRefGoogle Scholar
  62. Poole, A.M., Jeffares, D.C., Penny, D. 1999Prokaryotes, the new kids on the blockBioEssays21880889CrossRefGoogle Scholar
  63. Poole, A.M., Jeffares, D.C., Penny, D. 1998The path from the RNA worldJ. Mol. Evol.46117Google Scholar
  64. Poole, A.M., Penny, D., Sjöberg, B.-M. 2001Confounded Cytosine! Tinkering and the evolution of DNANat. Rev. Mol. Cell Biol.2147151CrossRefGoogle Scholar
  65. Raven, C.E. 1986John Ray: NaturalistCambridge University PressCambridge(reprint)Google Scholar
  66. Reader, J., Joyce, G. 2002A ribozyme composed of only two different nucleotidesNature420841844CrossRefGoogle Scholar
  67. Reanney, D.C. 1982The evolution of RNA virusesAnnu. Rev. Microbiol.364773CrossRefGoogle Scholar
  68. Rebek J. 1994. Synthetic self-replicating molecules. Sci. Am. July 34–40.Google Scholar
  69. Skoultchi, A.I., Morowitz, H.J. 1964Information storage and survival of biological systems at temperatures near absolute zeroYale J. Biol. Med.37158163Google Scholar
  70. Smith, E., Morowitz, H.J. 2004Universality in intermediary metabolismProc. Natl. Acad. Sci. U.S.A.1011316813173Google Scholar
  71. Sowerby, S.J., Petersen, G.B. 2002Life before RNAAstrobiology2231239CrossRefGoogle Scholar
  72. Steitz, T.A., Moore, P.B. 2003RNAthe first macromolecular catalyst: the ribosome is a ribozymeTrends Biochem. Sci.28411418CrossRefGoogle Scholar
  73. Sutherland, J.D., Whitfield, J.N. 1997Prebiotic chemistry: a bioorganic perspectiveTetrahedron531149311527Google Scholar
  74. Szathmáry, E. 2003Why are there four letters in the genetic alphabet?Nat. Rev. Genet.49951001Google Scholar
  75. Tamura, K., Schimmel, P. 2004Chiral-selective aminoacylation of an RNA minihelixScience3051253CrossRefGoogle Scholar
  76. Trevors, J.T. 2003Possible origin of a membrane in the subsurface of the EarthCell Biol. Intern.27451457Google Scholar
  77. Trinks, H., Schröder, W., Biebricher, C.K. 2003Eis und die Ensthehung des Lebens. (Ice and the origin of life)Shaker VerlagAachenGoogle Scholar
  78. Wächtershauser, G. 1992Groundworks for an evolutionary biochemistry – the iron sulfur worldProg. Biophys. Mol. Biol.5885202Google Scholar
  79. Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A., Breaker, R.R. 2004Control of gene expression by a natural metabolite-responsive ribozymeNature428281286CrossRefGoogle Scholar
  80. Woese, C.R. 2002On the evolution of cellsProc. Natl Acad. Sci. USA9987428747CrossRefGoogle Scholar
  81. Zintzaras, W., Santos, M., Szathmary, E. 2002‘Living’ under the challenge of information decay: the stochastic corrector model vs hypercyclesJ. Theor. Biol.217167181CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • David Penny
    • 1
  1. 1.Allan Wilson Center for Molecular Ecology and EvolutionMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations