Expression of rice OsMyb4 transcription factor improves tolerance to copper or zinc in canola plants
- 27 Downloads
Abstract
The effects of copper and zinc salts on transgenic canola plants expressing rice transcription factor (TF) OsMYB4 were investigated. Transgenic plants (TPs), which showed high OsMyb4 expression in response to either Cu or to Zn excess, were used for the current study. In leaves of TPs, the content of Cu was equal and the content of Zn was significantly higher than in non-transformed plants (NTPs). The TPs grown on extremely high concentration of heavy metals (HMs; 150 μM CuSO4 or 5 000 μM ZnSO4) were able to survive for more than 15 d, while NTPs died after 7 - 9 d of incubation. This indicates that expression of OsMyb4 in canola plants improves their HM tolerance. The TPs tolerance to HMs was confirmed by higher shoot biomass than that in NTPs. Excess of HMs caused oxidative stress (indicated by increase in malondialdehyde content) especially in leaves of NTPs. This data suggests a protective role of the OsMyb4 TF in oxidative stress. The HMs caused a lower decrease in activities of superoxide dismutase and guaiacol peroxidase in TPs than in NTPs. Higher tolerance of TPs to HMs was also suggested by a considerable increase in the content of low-molecular phenolic compounds, including flavonoids and anthocyanins, as well as proline (a potential antioxidant and chaperon). These data suggest that OsMYB4 may play a role as a positive regulator of phenylpropanoid pathway and proline synthesis. The created canola OsMyb4 TPs may be useful for future applications in phytoremediation of HM-polluted soils.
Additional key words
anthocyanins Brassica napus guaiacol peroxidase heavy metals malondialdehyde proline superoxide dismutaseAbbreviations
- CAT
catalase
- HM(s)
heavy metal(s)
- LMPC
low molecular phenolic compound
- MDA
malondialdehyde
- MYB
myeloblastosis protein family
- NTP(s)
non-transformed plant(s)
- POD
guaiacol peroxidase
- ROS
reactive oxygen species
- SOD
superoxide dismutase
- TBA
thiobarbituric acid
- TF(s)
transcription factor(s)
- TP(s)
transgenic plant(s)
Preview
Unable to display preview. Download preview PDF.
References
- Akagi, T., Ikegami, A., Tsujimoto, T., Kobayashi, S., Sato, A., Kono, A., Yonemori, K.: DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. — Plant Physiol. 151: 2028–2045, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
- Aydin, G., Yucel, M., Chan, M.-T., Oktem, H.A.: Evaluation of abiotic stress tolerance and physiological characteristics of potato (Solanum tuberosum L. cv. Kennebec) that heterologously expresses the rice OsMyb4 gene. — Plant Biotechnol. Rep. 8: 295–304, 2014.CrossRefGoogle Scholar
- Baldoni, E., Genga, A., Medici, A., Coraggio, I., Locatelli, F.: The OsMyb4 gene family: stress response and transcriptional auto-regulation mechanisms. — Biol. Plant. 57: 691–700, 2013.CrossRefGoogle Scholar
- Ban, Q., Liu, G., Wang, Y.: A DREB gene from Limonium bicolor mediates molecular and physiological responses to Cu stress in transgenic tobacco. — J. Plant Physiol. 168: 449–458, 2011.CrossRefPubMedGoogle Scholar
- Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
- Beauchamp, Ch., Fridovich, I.: Superoxide dismutase improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.CrossRefPubMedGoogle Scholar
- Changela, A., Chen, K., Xue, Y., Holschen, J., Outten, C.E., O’Halloran, T.V., Mondragorn, A.: Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. — Science 301: 1383–1387, 2003.CrossRefPubMedGoogle Scholar
- Dal Corso, G., Farinati, S., Maistri, S., Furini, A.: How plants cope with cadmium: staking all on metabolism and gene expression. — J. Integr. Plant Biol. 50: 1268–1280, 2008.CrossRefGoogle Scholar
- Docimo, T., Mattana, M., Fasano, R., Cosonni, R., De Tommasi, N., Coraggio, I., Leone, A.: Ectopic expression of the OsMyb4 gene enhances synthesis of hydroxycinnamic acid derivatives in tobacco and clary sage. — Biol. Plant. 57: 179–183, 2013.CrossRefGoogle Scholar
- Du, H., Zhang, L., Liu, L., Tang, X.F., Yang, W.J., Wu, Y.M., Huang, Y.B., Tang, Y.X.: Biochemical and molecular characterization of plant MYB transcription factor family. — Biokhimiya (Moscow). 74: 1–11, 2009.CrossRefGoogle Scholar
- Esen, A.A.: Simple method for quantitative, semiquantitative, and qualitative assay of protein. — Anal. Biochem. 89: 264–273, 1978.CrossRefPubMedGoogle Scholar
- Fulton, T.M., Chunwongse, J., Tanksley, S.D.: Microprep protocol for extraction of DNA from tomato and other herbaceous plants. — Plant mol. Biol. Rep. 13: 207–209, 1995.CrossRefGoogle Scholar
- Gage, T.B., Wendei, S.H.: Quantitive determination of certain flavonol 3-glycosides. — Anal. Chem. 22: 708–711, 1950.CrossRefGoogle Scholar
- Geethalakshmi, S., Barathkumar, S., Prabu, G.: The MYB transcription factor family genes in sugarcane (Saccharum sp.). — Plant mol. Biol. Rep. 33: 512–531, 2015.CrossRefGoogle Scholar
- Gomaa, A.M., Raldugina, G.N., Burmistrova, N.A., Radionov, N.V., Kuznetsov, Vl.V.: Response of transgenic rape plants bearing the OsMyb4 gene from rice encoding a trans-factor to low above-zero temperature. — Russ. J. Plant Physiol. 59: 118–128, 2012.CrossRefGoogle Scholar
- Günther, V., Lindert, U., Schaffner, W.: The taste of heavy metals: gene regulation by MTF-1. — Biochem. biophys. Acta 1823: 1416–1425, 2012.CrossRefPubMedGoogle Scholar
- Hardyman, J.E.J., Tyson, J., Jackson, K.A., Aldridge, C., Cockell, S.J., Wakeling, L.A., Valentine, R.A., Ford, D.: Zn sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to Zn. — Metallomics 8: 337–343, 2016.CrossRefPubMedGoogle Scholar
- Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxi-dation. — Arch. Biochem. Biophys. 125: 189–198, 1968.CrossRefPubMedGoogle Scholar
- Hoagland, D.R., Snyder, W.C.: Nutrition of strawberry plant under controlled conditions. — Proc. amer. Soc. hort. Sci. 30: 288–294, 1933.Google Scholar
- Hossain, M.A., Piyatida, P., Teixeira da Silva, J.A., Fujita, M.: Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. — J. Bot. 2012: 872875, 2012.Google Scholar
- Hossain, M.A., Hoque, A., Burritt, D.J., Fujita, M.: Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. — In: Ahmad, P. (ed.): Oxidative Damage to Plants. Pp. 477–522. Elsevier, New York 2014.CrossRefGoogle Scholar
- Ivanova, E.M., Kholodova, V.P., Kuznetsov, V.V.: Biological effects of high Cu and Zn concentrations and their interaction in rapeseed plants. — Russ. J. Plant Physiol. 57: 864–873. 2010.CrossRefGoogle Scholar
- Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B., Martin, C.: Transcriptional repression by AtMYB4 controls production of UVprotecting sunscreens in Arabidopsis. — EMBO J. 19: 6150–6161, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
- Kabata-Pendias, A.: Trace Elements in Soils and Plants. 4th Ed. — Taylor and Francis, Boca Raton, 2010.CrossRefGoogle Scholar
- Keller, G., Amanda, B., Winge, D.R.: Independent metalloregulation of Ace1 and Mac1 in Saccharomyces cerevisiae. — Eukaryotic Cell 4: 1863–1871, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
- Kholodova, V.P., Ivanova, E.M., Kuznetsov, V.V.: Initial step of Cu detoxification: outside and inside of the plant cell. — Soil Biol. 30: 143–167, 2011.CrossRefGoogle Scholar
- Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., Kuznetsov, V.V.: Signaling role of reactive oxygen species in plants under stress. — Russ. J. Plant Physiol. 59: 141–154. 2012.CrossRefGoogle Scholar
- Kumar, S., Asif, M.H., Chakrabarty, D., Tripath, R.D., Dubey, R.S., Trivedi, P.K.: Comprehensive analysis of regulatory elements of the promoters of rice sulfate transporter gene family and functional characterization of OsSul1;1 promoter under different metal stress. — Plant Signal. Behav. 10: e990843-1-6, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
- Kuznetsov, V.V., Rakitin, V.Yu., Borisova, N.N., Rotchupkin, B.V.: Why does heat shock increases alt resistance in cotton plants? — Plant Physiol. Biochem. 31: 181–188, 1993.Google Scholar
- Kuznetsov, V.V., Shevyakova, N.I.: Proline under stress conditions: biological role, metabolism, and regulation. — Russ. J. Plant Physiol. 46: 305–320, 1999.Google Scholar
- Lata, C., Yadav, A., Prasad, M.: Role of plant transcription factors in abiotic stress tolerance. — In: Shanker, A., Venkateswarlu, B. (ed.): Abiotic Stress Response in Plants — Physiological, Biochemical and Genetic Perspectives. Pp. 269–296. InTech, Rijeka 2011.Google Scholar
- Laura, M., Consonni, R., Locatelli, F., Fumagalli, E., Allavena, A., Corraggio, I., Mattana, M.: Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing OsMyb4. — Plant Physiol. Biochem. 48: 764–771, 2010.CrossRefPubMedGoogle Scholar
- Li, C., Tan, D.X., Liang, D., Chang, C., Jia, D., Ma, F.: Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. — J. exp. Bot. 5: 1–12, 2014.Google Scholar
- Lukatkin, A.S., Anjum, N.A.: Control of cucumber (Cucumis sativus L.) tolerance to chilling stress-evaluating the role of ascorbic acid and glutathione. — Front. Environ. Sci. 2: 1–6, 2014.CrossRefGoogle Scholar
- Malyshenko, S.I., Tyulkina, L.G., Zvereva, S.D., Raldugina, G.N.: Transgenic Brassica campestris plants expressing the gfp gene. — Russ. J. Plant Physiol. 50: 276–281, 2003.CrossRefGoogle Scholar
- Mattana, M., Biazzi, E., Consonni, R., Locatelli, F., Vannini, C., Provera, S., Corragio, I.: Overexpression of OsMyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. — Physiol. Plant. 125: 212–223, 2005.CrossRefGoogle Scholar
- Mostofa, M.G., Fujita, M.: Salicylic acid alleviates Cu toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. — Ecotoxicology 22: 959–973, 2013.CrossRefPubMedGoogle Scholar
- Murashige, T., Skoog, F.A.: Revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–482, 1962.CrossRefGoogle Scholar
- Murray, J.R., Hackett, W.P.: Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. — Plant Physiol. 97: 343–351, 1991.CrossRefPubMedPubMedCentralGoogle Scholar
- Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M.: Heavy metals, occurrence and toxicity for plants: a review. — Environ. Chem. Lett. 8: 199–216, 2010.CrossRefGoogle Scholar
- Pandolfi, D., Solinas, G., Valle, G., Coraggio, I.: Cloning of a cDNA encoding a novel Myb gene (accession no. Y11414) highly expressed in cold stressed rice coleoptiles (PGR PGR97–079). — Plant Physiol. 114: 747, 1997.CrossRefGoogle Scholar
- Park, M.R., Yun, K.Y., Mohanty, B., Herath, V., Xu, F., Wijaya, E., Bajic, V.B., Yun, S.J., De Los Reyes, B.G.: Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. — Plant Cell Environ. 33: 2209–2230, 2010.CrossRefPubMedGoogle Scholar
- Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E., Mattana, M.: OsMyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. — Plant Cell Rep. 27: 1677–1686, 2008.CrossRefPubMedGoogle Scholar
- Ridge, I., Osborne, D.: Role of peroxidase when hydroxyproline-rich protein in plant cell walls is increased by ethylene. — Nat. New Biol. 229: 206–208, 1971.CrossRefGoogle Scholar
- Rutherford, J.C., Bird, A.J.: Metal-responsive transcription factors that regulate iron, Zn, and Cu homeostasis in eukaryotic cells. — Eukaryotic. Cell 3: 1–13, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
- Saijo, T., Nagasawa, A.: Development of a tightly regulated and highly responsive Cu-inducible gene expression system and its application to control of flowering time. — Plant Cell Rep. 33: 47–59, 2014.CrossRefPubMedGoogle Scholar
- Saijo, T., Nagasawa, A.: A new detection tool for bioavailable Cu utilizing transgenic plants carrying recombinant yeast ACE1 transcription factor and GFP reporter genes. — Soil Sci. Plant Nutr. 2: 281–286, 2015.CrossRefGoogle Scholar
- Singh, K.B., Foley, R.C., Oñate-Sánchez L.: Transcription factors in plant defense and stress responses. — Curr. Opin. Plant Biol. 5: 430–436, 2002.CrossRefPubMedGoogle Scholar
- Smith, N.C., Matthews, J.M.: Mechanisms of DNA-binding specificity and functional gene regulation by transcription factors. — Curr. Opin. Struct. Biol. 38: 68–74, 2016.CrossRefPubMedGoogle Scholar
- Soltész, A., Vágújfalvi, A., Rizza F, Kerepesi, I., Galiba, G., Cattivelli, L., Coraggio, I., Crosatti, C.: The rice OsMyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. — J. appl. Genet. 53: 133–143, 2012.CrossRefPubMedGoogle Scholar
- Szabados, L., Savouré, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 89–97, 2010.CrossRefPubMedGoogle Scholar
- Upadhyay, R.K., Panda, S.K.: Cu-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). — Compt. Rend. Biol. 332: 623–632, 2009.CrossRefGoogle Scholar
- Vannini, C., Campa, M., Iriti, M., Genga, A., Faoro, F., Carravieri, S., Rotino, G.L., Rossoni, M., Spinardi, A., Bracale, M.: Evaluation of transgenic tomato plants ectopically expressing the rice OsMyb4 gene. — Plant Sci. 173: 231–239, 2007.CrossRefGoogle Scholar
- Vannini, C., Iriti, M., Bracale, M., Locatelli, F., Faoro, F., Croce, P.: The ectopic expression of the rice OsMyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. — Physiol. mol. Plant Pathol. 69: 26–42, 2006.CrossRefGoogle Scholar
- Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., Coraggio, I.: Overexpression of the rice OsMyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. — Plant J. 37: 115–127, 2004.CrossRefPubMedGoogle Scholar
- Wang, C, Zhang, S.H, Wang, P.F, Hou, J, Zhang, WJ, Li, W, Lin, Z.P. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. — Chemosphere 75: 1468–1476, 2009.CrossRefPubMedGoogle Scholar
- Yruela, I.: Cu in plants: acquisition, transport and interactions. — Funct. Plant Biol. 36: 409–430, 2009.CrossRefGoogle Scholar
- Yruela, I.: Transition metals in plant photosynthesis. — Metallomics. 5: 1090–1109, 2013.CrossRefPubMedGoogle Scholar
- Zagoskina, N.B., Dubravina, G.A., Alyavina, A.K., Gonsharuk, E.A.: Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. — Russ. J. Plant Physiol. 50: 302–308, 2003.CrossRefGoogle Scholar