Biologia Plantarum

, Volume 62, Issue 2, pp 261–268 | Cite as

NaPi/SX-RNase segregates as a functional S-RNase and is induced under phosphate deficiency in Nicotiana alata

  • H. J. Rojas
  • C. Caspani
  • E. G. Escobar
  • R. Quiroga
  • A. Goldraij
Original Papers


In plants, class III T2 RNases involves two groups of structurally similar proteins, but with different biological functions: S-RNases and non-S-RNases. S-RNases have been involved in self-incompatibility whereas non-S-RNases have been implicated in stress responses. Here we report a novel class III RNase termed NaPi/Sx-RNase, which works both in self-incompatibility and in response to phosphate deficiency. The NaPi/Sx-RNase gene was identified in roots of Nicotiana alata grown in the absence of inorganic phosphate. Phylogenetic analysis showed that NaPi/Sx-RNase was included within the class III RNase T2 group. The NaPi/Sx-RNase was expressed in styles and its temporal expression increased in parallel to stylar development, with a slight decrease after anthesis. Progeny analysis showed that NaPi/Sx-RNase and S107-RNase, a functional allele of the self-incompatibility system, segregated in a 1:1 ratio. The progeny segregation of a semicompatible cross, in which NaPi/Sx-RNase was shared by the two parents, exhibited a pattern consistent with a functional S-RNase allele. Considering genetic segregation, primary structure, and physiological role, the NaPi/Sx-RNase may be either an S-RNase with diversified functions or a non-S-RNase linked to the S-locus. To our knowledge, this is the first evidence for a specific function of the S-locus other than the self-incompatibility reaction. These results support the hypothesis that the self-incompatibility and stress responses may have evolved from a common origin.

Additional key words

ribonuclease self-incompatibility S-locus stress responses 



Nicotiana alata


inorganic phosphate




reverse transcription polymerase chain reaction




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2018_783_MOESM1_ESM.pdf (106 kb)
Supplementary material, approximately 106 KB.


  1. Abascal, F., Zardoya, R., Posada, D.: ProtTest: selection of best-fit models of protein evolution. — Bioinformatics 21: 2104–2015, 2005.CrossRefPubMedGoogle Scholar
  2. Banović, B., Šurbanovski, N., Konstantinović, M., Maksimović, V.: Basic RNases of wild almond (Prunus webbii): cloning and characterization of six new S-RNase and one “non-S RNase” genes. — J. Plant Physiol. 166: 395–402, 2009.CrossRefPubMedGoogle Scholar
  3. Bedinger, P.A., Broz, A.K., Tovar-Mendez, A., McClure, B.: Pollen-pistil interactions and their role in mate selection. — Plant Physiol. 173: 79–90, 2017.CrossRefPubMedGoogle Scholar
  4. Boivin, N., Morse, D., Cappadocia, M.: Degradation of SRNase in compatible pollen tubes of Solanum chacoense inferred by immunogold labeling. — J. cell. Sci. 127: 4123–4127, 2014.CrossRefPubMedGoogle Scholar
  5. Clark, K.R., Sims, T.R.: The S-ribonuclease gene of Petunia hybrida is expressed in non-stylar tissue, including immature anthers. — Plant Physiol. 106: 25–36, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dodds, P.N., Clarke, A.E., Newbigin, E.: Molecular characterisation of an S-like RNase of Nicotiana alata that is induced by phosphate starvation. — Plant mol. Biol. 31: 227–238, 1996.CrossRefPubMedGoogle Scholar
  7. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. — Nucl. Acids Res. 32: 1792–1797, 2004.CrossRefPubMedGoogle Scholar
  8. Entani, T., Kubo, K.I., Isogai, S,, Fukao, Y., Shirakawa, M., Isogai, A., Takayama, S. Ubiquitin-proteasome-mediated degradation of S-RNase in a solanaceous cross compatibility reaction. - Plant J. 78: 1014–1021 2014.CrossRefPubMedGoogle Scholar
  9. Fujii, S., Kubo, K.I., Takayama, S.: Non-self- and selfrecognition models in plant self-incompatibility. — Nature Plants 2: 16130, 2016.CrossRefPubMedGoogle Scholar
  10. Goldraij, A., Kondo, K., Lee, C.B., Hancock, C.N., Sivaguru. M., Vázquez-Santana, S., Kim, S., Phillips, T.E., Cruz-García, F., McClure, B.: Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. — Nature 439: 805–810, 2006.CrossRefPubMedGoogle Scholar
  11. Golz, J.F., Clarke, A.E., Newbigin, E., Anderson, M.: A relic S-RNase is expressed in the styles of self-compatible Nicotiana sylvestris. — Plant J. 16: 591–599, 1998.CrossRefPubMedGoogle Scholar
  12. Hancock, C.N., Kent, L., McClure, B.A.: The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. — Plant J. 43: 716–723 2005.CrossRefPubMedGoogle Scholar
  13. Hillwig, M.S., Kanobe, C., Robert, W., Thornburg, R.W., MacIntosh, G.C.: Identification of S-RNase and peroxidase in Petunia nectar. — J. Plant Physiol. 168: 734–738 2011.CrossRefPubMedGoogle Scholar
  14. Hillwig, M.S., Liu, X., Liu, G., Thornburg, R.W., MacIntosh, G.C.: Petunia nectar proteins have ribonuclease activity. — J. exp. Bot. 61: 2951–2965 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hiscock, S.J., Kües, U., Dickinson,. H.G.: Molecular mechanisms of self incompatibility in flowering plants and fungi: different means to the same end. — Trends cell. Biol. 6: 421–428, 1996.CrossRefPubMedGoogle Scholar
  16. Hua, Z., Kao, T.H.: Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based selfincompatibility. — Plant Cell 18: 2531–2553, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Igic, B., Kohn, J.R.: Evolutionary relationships among selfincompatibility RNases. — Proc. nat. Acad. Sci. USA 98: 13167–13171, 2001.CrossRefPubMedGoogle Scholar
  18. Ioerger, T.R., Clarke, A.E., Kao, T.-H.: Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. — Proc. nat. Acad. Sci. USA 87: 9732–9735, 1990.CrossRefPubMedGoogle Scholar
  19. Ioerger, T.R., Gohlke, J.R., Xu, B., Kao, T.: Primary structural features of the self-incompatibility protein in Solanaceae. — Sex. Plant Reprod. 4: 81–87, 1991.CrossRefGoogle Scholar
  20. Iwano, M., Takayama, S.: Self/non-self discrimination in angiosperm self-incompatibility. — Curr. Opin. Plant Biol. 15: 1–6 2012.CrossRefGoogle Scholar
  21. Jiménez-Durán, K., McClure, B., García-Campusano, F., Rodríguez-Sotres, R., Cisneros, J., Busot, G., Cruz-García, F.,: NaStEP: a proteinase inhibitor essential to selfincompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes. — Plant Physiol. 161: 97–107, 2013.CrossRefPubMedGoogle Scholar
  22. Kao, T.-H., Tsukamoto, T.: The molecular and genetic bases of S-RNase-based self-incompatibility. — Plant Cell 16: 72–83 2004.CrossRefGoogle Scholar
  23. Köck, M., Stenzel, I., Zimmer, A.,: Tissue-specific expression of tomato ribonuclease LX during phosphate starvationinduced root growth. — J. exp. Bot. 57: 3717–3726, 2006.CrossRefPubMedGoogle Scholar
  24. Kubo, K., Entani, T., Takara, A., Wang, N., Fields, A.M., Hua, Z., Toyoda, M., Kawashima, S., Ando, T., Isogai, A., Kao, T.-H., Takayama, S.: Collaborative non-self recognition system in S-RNase-based self-incompatibility. — Science 330: 796–799, 2010.CrossRefPubMedGoogle Scholar
  25. Lee, H.S., Singh, A., Kao, T.-H.: RNase X2, a pistil-specific ribonuclease from Petunia inflata, shares sequence similarity with solanaceous S proteins. — Plant mol. Biol. 20: 1131–1141, 1992.CrossRefPubMedGoogle Scholar
  26. Lee, H.S., Huang, S., Kao, T.-H.: S proteins control rejection of incompatible pollen in Petunia inflata. — Nature 367: 560–563, 1994.CrossRefPubMedGoogle Scholar
  27. Li, S., Sun, P., Williams, J.S., Kao, T.-H.: Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata. — Plant Reprod. 27: 31–45 2014.CrossRefPubMedGoogle Scholar
  28. Liang, L., Huang, J., Xue, Y.: Identification and evolutionary analysis of a relic S-RNase in Antirrhinum. — Sex. Plant Reprod. 16: 17–22, 2003.Google Scholar
  29. Liu, W., Fan, J., Li, J., Song, Y., Li, Q., Zhang, Y., Xue, Y.: SCFSLF-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. — Front. Genet. 5: 00228, 2014.Google Scholar
  30. Luhtala, N., Parker, R.: T2 family ribonucleases: ancient enzymes with diverse roles. — Trends Biochem. Sci. 35: 253–259, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Luu, D.T., Qin, X., Morse, D., Cappadocia, M.: S-RNase uptake by compatible pollen tubes in gametophytic selfincompatibility. — Nature 407: 649–651, 2000.CrossRefPubMedGoogle Scholar
  32. MacIntosh, G.C.: RNase T2 family: enzymatic properties, functional diversity, and evolution of ancient ribonucleases. — In: Nicholson, A.W. (ed.): Ribonucleases, Nucleic Acids and Molecular Biology. Pp. 89–114. Springer, Berlin 2011.Google Scholar
  33. MacIntosh, G.C., Hillwig, M.S., Meyer, A., Flagel, L.: RNase T2 genes from rice and the evolution of secretory ribonucleases in plants. — Mol. Genet. Genom. 283: 381–396, 2010.CrossRefGoogle Scholar
  34. McClure, B.A., Mou, B., Canevascini, S., Bernatzky, R.: A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. — Proc. nat. Acad. Sci. USA 96: 13548–13553, 1999.CrossRefPubMedGoogle Scholar
  35. Meng, X.Y., Hua, Z.H., Wang, N., Fields, A.M., Dowd, P.E., Kao, T.-H.: Ectopic expression of S-RNase of Petunia inflata in pollen results in its sequestration and noncytotoxic function. — Sex. Plant Reprod. 22: 263–275, 2009.CrossRefPubMedGoogle Scholar
  36. Murfett, J., Atherton, T.L., Mou, B., Gasser, C.S., McClure, B.A.: S-RNase expressed in transgenic Nicotiana causes Sallele- specific pollen rejection. — Nature 367: 563–566, 1994.CrossRefPubMedGoogle Scholar
  37. Nasrallah, J.B.: Recognition and rejection of self in plant selfincompatibility: comparisons to animal histocompatibility. — Trends Immunol. 26: 412–418, 2005.CrossRefPubMedGoogle Scholar
  38. Rea, A.C., Nasrallah, J.B. Self-incompatibility systems: barriers to self-fertilization in flowering plants. — Int. J. Dev. Biol. 52: 627–636, 2008.CrossRefPubMedGoogle Scholar
  39. Richman, A., Kohn, J.R.: Evolutionary genetics of selfincompatibility in the Solanaceae. — Plant mol. Biol 42: 169–179, 2000.CrossRefPubMedGoogle Scholar
  40. Rojas, H., Floyd, B., Morriss, S.C., Bassham, D., MacIntosh, G.C., Goldraij, A.: NnSR1, a class III non-S-RNase specifically induced in Nicotiana alata under phosphate deficiency, is localized in endoplasmic reticulum compartments. — Plant Sci. 236: 250–259, 2015.CrossRefPubMedGoogle Scholar
  41. Rojas, H.J., Roldán, J.A., Goldraij, A.: NnSR1, a class III non- S-RNase constitutively expressed in styles, is induced in roots and stems under phosphate deficiency in Nicotiana alata. — Ann. Bot. 112: 1351–1360, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Roldán. J.A., Quiroga, R., Goldraij, A.: Molecular and genetic characterization of novel S-RNases from a natural population of Nicotiana alata. — Plant Cell Rep. 29: 735–746 2010.CrossRefPubMedGoogle Scholar
  43. Roldán, J.A., Rojas, H.J., Goldraij, A.: Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata. — Ann. Bot. 110: 787–795, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Roldán, J.A., Rojas, H.J., Goldraij, A.: In vitro inhibition of incompatible pollen tubes in Nicotiana alata involves the uncoupling of the F-actin cytoskeleton and the endomembrane trafficking system. — Protoplasma 252: 63–75, 2015.CrossRefPubMedGoogle Scholar
  45. Sijacic, P., Wang, X., Skirpan, L., Wang, Y., Dowd, P.E., McCubbin, A.G., Huang, S., Kao, T.-H.: Identification of the pollen determinant of S-RNase-mediated selfincompatibility. — Nature 429: 302–305 2004.CrossRefPubMedGoogle Scholar
  46. Stamatakis, A.: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. — Bioinformatics 30: 1312–1313, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sun, P., Kao, T.-H.: Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases. — Plant Cell 25: 470–485, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Takayama, S., Isogai, A.: Self-incompatibility in plants. — Annu. Rev. Plant Biol. 56: 467–489, 2005.CrossRefPubMedGoogle Scholar
  49. Tran, H.T., Plaxton, W.C.: Proteomic analysis of alterations in the secretome of Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. — Proteomics 8: 4317–4326, 2008.CrossRefPubMedGoogle Scholar
  50. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., Barton, G.J.: Jalview Version 2-a multiple sequence alignment editor and analysis workbench. — Bioinformatics 25: 1189–1191, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wang, Y., Wang, X., McCubbin, A.G., Kao, T.-H.: Genetic mapping and molecular characterization of the selfincompatibility (S) locus in Petunia inflata. — Plant mol.Biol. 53: 565–580, 2003.CrossRefPubMedGoogle Scholar
  52. Wheeler, D., Newbigin, E.: Expression of 10 S-Class SLF-like genes in Nicotiana alata pollen and its implications for understanding the pollen factor of the S locus. — Genetics 177: 2171–2180, 2007.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • H. J. Rojas
    • 1
  • C. Caspani
    • 2
  • E. G. Escobar
    • 2
  • R. Quiroga
    • 3
  • A. Goldraij
    • 2
  1. 1.Instituto Universitario de Ciencias de la Salud, Facultad de MedicinaLa RiojaArgentina
  2. 2.Departamento de Química Biológica, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Departamento de Química Teórica y Computacional, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations