Advertisement

Biologia Plantarum

, Volume 62, Issue 2, pp 369–378 | Cite as

Characterization of novel D-hordeins from Psathyrostachys juncea

  • X. K. Hu
  • S. F. Dai
  • T. Ouellet
  • M. Balcerzak
  • H. Rocheleau
  • S. Khanizadeh
  • Z. J. Pu
  • Z. H. Yan
Original Papers

Abstract

Three genes encoding novel D-hordeins, Ns 1.3, Ns 2.6, and Ns 2.9 were isolated from Psathyrostachys juncea. The Ns 1.3 differed from Ns 2.6 and Ns 2.9 by having a shorter open reading frame (< 1.5 kb versus > 2.5 kb), and was probably not expressed as a normal protein, while the activities for Ns 2.6 and Ns 2.9 were verified by bacterial expression. Though highly similar primary structure to wheat high molecular mass glutenin subunits (HMM-GSs) and barley D-hordeins, Ns 2.6 and Ns 2.9 had more cysteine residues (nine in total) and a larger molecular mass than HMMGSs, and a longer N-terminal length than D-hordeins. Phylogenetic analysis revealed that the Ps. juncea D-hordeins were divided into Ns 1.3 type and Ns 2.6/Ns 2.9 type. Divergence times indicated that Ns 1.3 diverged the earliest from the orthologous Triticeae locus, while Ns 2.6 and Ns 2.9 and the D-hordeins from two Hordeum species diverged nearly at the same time from those loci, and the divergence between the D-hordeins of H. chilense and Ns 2.6/Ns 2.9 was more recent than between the two Hordeum species. The novel Ps. juncea D-hordeins have the potential to be very important for improving the end-use quality of wheat flours because of the presence of extra cysteine residues and longer repetitive domain, in addition they can contribute to the understanding of the evolution of Triticeae prolamins.

Additional key words

bacterial expression Hordeum chilense H. vulgare HMM-prolamins phylogenetic analysis Triticum aestivum 

Abbreviations

AA

amino acid

CTAB

cetyltrimethyl ammonium bromide

DTT

dithiothreitol

HMM-GSs

high molecular mass glutenin subunits

IPTG

isopropyl-β-D-1-galactoside

MYA

million years ago

ORF

open reading frame

PCR

polymerase chain reaction

SDS-PAGE

sodium dodecyl sulfate polyacrylamide gel electrophoresis

UTR

untranslated region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2018_775_MOESM1_ESM.pdf (98 kb)
Supplementary material, approximately 98.3 KB.

References

  1. Alvarez, J.B., Ballesteros, J., Sillero, J.A., Martı́n, L.M.: Tritordeum: a new crop of potential importance in the food industry. — Hereditas 116: 193–197, 1992.CrossRefGoogle Scholar
  2. Alvarez, J.B., Campos, L.A.C., Martı́n, A., Sillero, J.A., Martı́n, L.M.: Genetic analysis of prolamins synthesised by the Hch genome and their effects on gluten strength in hexaploid Tritordeum. — Euphytica 107: 177–184, 1999.CrossRefGoogle Scholar
  3. Atanassov, P., Borries, C., Zaharieva, M., Monneveux, P.: Hordein polymorphism and variation of agromorphological traits in a collection of naked barley. — Genet. Resour. Crop Evol. 48: 353–360, 2001.CrossRefGoogle Scholar
  4. Baden, C., Bothmer, R., Flink, J., Jacobsen, N.: Intergeneric hybridization between Psathyrostachys and Hordeum. — Nord. J. Bot. 9: 333–342, 1989.CrossRefGoogle Scholar
  5. Baden, C.: A taxonomic revision of Psathyrostachys (Poaceae). — Nord. J. Bot. 11: 3–26, 1991.CrossRefGoogle Scholar
  6. Blake, T.K., Ullrich, S.E., Nilan, R.A.: Mapping of the Hor-3 locus encoding D hordein in barley. — Theor. appl. Genet. 63: 367–371, 1982.CrossRefPubMedGoogle Scholar
  7. Cao, Z., Deng, Z., Wang, M., Wang, X., Jing, J., Zhang, X., Shang, H., Li, Z.: Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line. — Plant Sci. 174: 544–549, 2008.CrossRefGoogle Scholar
  8. Dai, S.F., Pu, Z.J., Liu, D.C., Wei, Y.M., Zheng, Y.L., Hu, X.K., Yan, Z.H.: Characterization of novel HMW-GS in two diploid species of Eremopyrum. — Gene 519: 55–59, 2013.CrossRefPubMedGoogle Scholar
  9. Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from fresh tissue. — Focus 12: 13–15, 1990.Google Scholar
  10. Du, W.L., Wang, J., Lu, M., Sun, S.G., Chen, X.H., Zhao, J.X., Yang, Q.H., Wu, J.: Characterization of a wheat-Psathyrostachys huashanica Keng 4Ns disomic addition line for enhanced tiller numbers and stripe rust resistance. — Planta 239: 97–105, 2014.CrossRefPubMedGoogle Scholar
  11. Feeney, K.A., Wellner, N., Gilbert, S.M., Halford, N.G., Tatham, A.S., Shewry, P.R., Belton, P.S.: Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. — Biopolymers 72: 123–131, 2003.CrossRefPubMedGoogle Scholar
  12. Gaut, B.S.: Evolutionary dynamics of grass genomes. — New Phytol. 154: 15–28, 2002.CrossRefGoogle Scholar
  13. Gilbert, S.M., Wellner, N., Belton, P.S., Greenfield, J.A., Siligardic, G., Shewry, P.R., Tatham, A.S.: Expression and characterization of a highly repetitive peptide derived from a wheat seed storage protein. — BBA 1479: 135–146, 2000.PubMedGoogle Scholar
  14. Gu, Y.Q., Anderson, O.D., Londeore, C.F., Kong, X., Chibbar, R.N., Lazo, G.R.: Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. — Genome 46: 1084–1097, 2003.CrossRefPubMedGoogle Scholar
  15. Halford, N.G., Tatham, A.S., Sui, E., Daroda, L., Dreyer, T., Shewry, P.R.: Identification of a novel beta-turn-rich repeat motif in the D-hordeins of barley. — Biochem. biophys. Anal. 1122: 118–122, 1992.Google Scholar
  16. Hsiao, C., Wang, R.R.C., Dewey, D.R.: Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. — Can. J. Genet. Cytol. 28: 109–120, 1986.CrossRefGoogle Scholar
  17. Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R., Gornicki, P.: Genes encoding plastid acetyl- CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. — Proc. nat. Acad. Sci. USA 99: 8133–8138, 2002.CrossRefPubMedGoogle Scholar
  18. Kong, L.N., Liang, Y., Qin, L.M., Sun, L., Xia, G.M., Liu, S.W.: Characterization of high molecular weight glutenin subunit genes from the Ns genome of Psathyrostachys juncea. — Dev. Genes Evol. 224: 189–196, 2014.CrossRefPubMedGoogle Scholar
  19. Liu, S.W., Zhao, F., Gao, X., Chen, F.G., Xia, G.M.: A novel high molecular weight glutenin subunit from Australopyrum retrofractum. — Amino Acids 39: 385–392, 2010.CrossRefPubMedGoogle Scholar
  20. Ma, D.F., Fang, Z.W., Yin, J.L., Chao, K.X., Jing, J.X., Li, Q., Wang, B.T.: Molecular mapping of stripe rust resistance gene YrHu derived from Psathyrostachys huashanica. — Mol. Breed. 36: 64, 2016.CrossRefGoogle Scholar
  21. Martı́n, A., Alvarez, J.B., Martı́n, L.M., Barro, F., Ballesteros, J.: The development of Tritordeum: a novel cereal for food processing. — J. Cereal Sci. 30: 85–95, 1999.CrossRefGoogle Scholar
  22. Payne, P.I.: Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. — Plant Biol. 38: 141–153, 1987.Google Scholar
  23. Pistón, F., Shewry, P.R., Barro, F.: D hordeins of Hordeum chilense: a novel source of variation for improvement of wheat. — Theor. appl. Genet. 115: 77–86, 2007.CrossRefPubMedGoogle Scholar
  24. Popineau, Y., Cornec, M., Lefebvre, J., Marchylo, B.: Influence of high Mr glutenin subunits on glutenin polymers and rheological properties of gluten and gluten subfractions of near-isogenic lines of wheat Sicco. — J. Cereal Sci. 19: 231–241, 1994.CrossRefGoogle Scholar
  25. Rasheed, A., Xia, X.C., Yan, Y.M., Appels, R., Mahmood, T., He, Z.H.: Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. — J. Cereal Sci. 60: 11–24, 2014.CrossRefGoogle Scholar
  26. Rutschmann, F.: Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. — Divers. Distribut. 12: 35–48, 2006.CrossRefGoogle Scholar
  27. Shewry, P.R., Halford, N.G.: Cereal seed storage proteins: structures, properties and role in grain utilization. — J. exp. Bot. 53: 947–958, 2002.CrossRefPubMedGoogle Scholar
  28. Shewry, P.R., Halford, N.G., Tatham, A.S., Popineau, Y., Lafiandra, D., Belton, P.S.: The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. — Adv. Food Nutr. Res. 45: 219–302, 2003.CrossRefPubMedGoogle Scholar
  29. Shewry, P.R., Tatham, A.S.: The prolamin storage proteins of cereal seeds: structure and evolution. — Biochem. J. 267: 1–12, 1990.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sun, Y.Q., Pu, Z.J., Dai, S.F., Pu, X.X., Liu, D.C., Wu, B.H., Lan, X.J., Wei, Y.M., Zheng, Y.L., Yan, Z.H.: Characterization of y-type high-molecular-weight glutenins in tetraploid species of Leymus. — Dev. Genes Evol. 224: 57–64, 2014.CrossRefPubMedGoogle Scholar
  31. Tamás, L., Gras, P.W., Solomon, R.G., Morell, M.K., Appels, R., Békés, F.: Chain extension and termination as a function of cysteine content and the length of the central repetitive domain in storage proteins. — J. Cereal Sci. 36: 313–325, 2002.CrossRefGoogle Scholar
  32. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. — Mol. Biol. Evol. 28: 2731–2739, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tatham, A.S., Miflin, B.J., Shewry, P.R.: The beta-turn conformation in wheat gluten proteins: relationship to gluten elasticity. — Cereal Chem. 62: 405–412, 1985.Google Scholar
  34. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. — Nucleic Acids Res. 22: 4673–4680, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wan, Y.F., Wang, D.W., Shewry, P.R., Halford, N.G.: Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevii and Aegilops cylindrica. — Theor. appl. Genet. 104: 828–839, 2002.CrossRefPubMedGoogle Scholar
  36. Wellner, N., Marsh, J., Savag, A., Halford, N.G., Shewry, P.R., Mills, E.N.C., Belton, P.S.: Comparison of repetitive sequences derived from high molecular weight subunits of wheat glutenin, an elastomeric plant protein. — Biomacromolecules 7: 1096–1103, 2006.CrossRefPubMedGoogle Scholar
  37. Wellner, N., Mills, E.N.C., Brownsey, G., Wilson, R.H., Brown, N., Freeman, J., Halford, N.G., Shewry, P.R., Belton, P.S.: Changes in protein secondary structure during gluten deformation studied by dynamic fourier transform infrared spectroscopy. — Biomacromolecules 6: 255–261, 2005.CrossRefPubMedGoogle Scholar
  38. Yin, Y.Q., Ma, D.Q., Ding, Y.: Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet. — Theor. appl. Genet. 107: 837–842, 2003.CrossRefPubMedGoogle Scholar
  39. Zhang, H.B., Dvořák, J.: The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotides sequences. — Amer. J. Bot. 78: 871–884, 1991.CrossRefGoogle Scholar
  40. Zhang, L., Li, Z., Fan, R., Wei, B., Zhang, X.: Structural characterization and evolutionary relationship of highmolecular- weight glutenin subunit genes in Roegnerianakaii and Roegneria alashanica. — Int. J. mol. Sci. 17: 1115, 2016.CrossRefPubMedCentralGoogle Scholar
  41. Zhao, J.X., Ji, W.Q., Wu, J., Chen, X.H., Cheng, X.N., Wang, J.W., Pang, Y.H., Liu, S.H., Yang, Q.H.: Development and identification of a wheat-Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. — Genet. Resour. Crop Evol. 57: 387–394, 2010.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • X. K. Hu
    • 1
    • 2
  • S. F. Dai
    • 1
  • T. Ouellet
    • 2
  • M. Balcerzak
    • 2
  • H. Rocheleau
    • 2
  • S. Khanizadeh
    • 2
  • Z. J. Pu
    • 3
  • Z. H. Yan
    • 1
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityChengduPR China
  2. 2.Ottawa Research and Development CentreAgriculture and Agri-Food CanadaOttawaCanada
  3. 3.Crop Research InstituteSichuan Academy of Agricultural ScienceChengduPR China

Personalised recommendations