Biologia Plantarum

, Volume 61, Issue 3, pp 587–594 | Cite as

Response of Arabidopsis thaliana root growth to phosphorus and its relation to media chemical composition

  • M. L. Strieder
  • K. G. Pinto
  • C. Bertoldi
  • A. de B. Schneider
  • C. A. Delatorre
Original paper


The interaction between phosphorus (P) and other media components alters root development and masks the plant response and thus limits the ability to correctly identify P-deficiency response (pdr) mutants. This study aims to assess changes in root development caused by different composition of growth media normally used in Arabidopsis research and to study their effects on pdr-mutant screening. Primary root growth of four genotypes was analyzed in media differing in P concentrations: half-strength Murashige and Skoog (½ MS) and Somerville and Ogren (SO). The effects of nitrogen source and Fe on root growth were investigated in each medium separately and in a mixture. We found that the primary root length of all genotypes grown on ½ MS was reduced in comparison with plants grown on SO medium. The mutant pdr9 was the most sensitive in ½ MS, This mutant was also hypersensitive to Fe that intensified its sensitivity to ammonium. Ammonium increased the root inhibition caused by Fe also in wild-type plants. In conclusion, on the basis of our study we recommend to use SO medium, which ensures an efficient selection to screen for pdr mutants through root growth. Moreover, nitrogen sources in the media other than nitrate should be taken carefully.

Additional key words

ammonium sensitivity iron hypersensitivity nutrient interactions phosphate deficiency quiescent center identity 



Murashige and Skoog


phosphate deficiency response1


phosphate starvation response 1


quiescent center


Somerville and Ogren


wild type


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2017_713_MOESM1_ESM.pdf (60 kb)
Supplementary material, approximately 61 KB.


  1. Abercrombie, J., Halfhill, M., Ranjan, P., Rao, M., Saxton, A., Yuan, J., Stewart, C.N.: Transcriptional responses of Arabidopsis thaliana plants to As(v) stress. — BMC Plant Biol. 8: 87, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Babourina, O., Voltchanskii, K., McGann, B., Newman, I., Rengel, Z.: Nitrate supply affects ammonium transport in canola roots. — J. exp. Bot. 58: 651–658, 2007.CrossRefPubMedGoogle Scholar
  3. Briat, J.-F., Rouached, H., Tissot, N., Gaymard, F., Dubos, C.: Integration of P, S, Fe and Zn nutrition signals in Arabidopsis thaliana: potential involvement of phosphate starvation response 1 (phr1). — Front.Plant Sci. 6: 290, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Britto, D.T., Kronzucker, H.J.: NH4 + toxicity in higher plants: a critical review. — J. Plant Physiol. 159: 567–584, 2002.CrossRefGoogle Scholar
  5. Cerutti T., Delatorre C.A.: Nitrogen and phosphorus interaction and cytokinin responses of the primary root of Arabidopsis thaliana and the pdr1 mutant. — Plant Sci. 198: 91–97, 2013.CrossRefPubMedGoogle Scholar
  6. Chen, D.L., Delatorre, C.A., Bakker, A., Abel, S.: Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana. — Planta 211: 13–22, 2000.CrossRefPubMedGoogle Scholar
  7. Chevalier, F., Pata, M., Nacry, P., Doumas, P., Rossignol, M.: Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. — Plant Cell Environ. 26: 1839–1850, 2003.CrossRefGoogle Scholar
  8. Costa, C.T., Strieder, M.L., Abel, S., Delatorre, C.A.: Phosphorus and nitrogen interaction: loss of QC identity in response to P or N limitation is antecipated in pdr23 mutant. — Braz. J. Plant Physiol. 23: 219–229, 2011.CrossRefGoogle Scholar
  9. Delatorre, C.A.: Phosphate Deficiency Response: Searching for the Signaling Pathway. — Lambert Academic Publishing, Köln, Germany 2009.Google Scholar
  10. Feng, J., Volk, R.J., Jackson, W.A.: Source and magnitude of ammonium generation in maize roots. — Plant Physiol. 118: 835–841, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Garnica, M., Houdusse, F., Zamarreño, A.M., Garcia-Mina, J.M.: The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic acid content and reduces abscisic acid in wheat plants grown with ammonium. — J. Plant Physiol. 167: 1264–1272, 2010.CrossRefPubMedGoogle Scholar
  12. González-Mendoza, V., Zurita-Silva, A., Sánchez-Calderón, L., Sánchez-Sandoval, M.E., Oropeza-Aburto, A., Gutiérrez, A.D., Alatorre-Cobos, F., Herrera-Estrella, L.: Apsr1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability. — Plant Sci. 205–206: 2–12, 2013.CrossRefPubMedGoogle Scholar
  13. Hammond, J.P., White, P.J.: Sucrose transport in the phloem: integrating root responses to phosphorus starvation. — J. exp. Bot. 59: 93–109, 2008.CrossRefPubMedGoogle Scholar
  14. Hammond, J.P., White, P.J.: Sugar signaling in root responses to low phosphorus availability. — Plant Physiol. 156: 1033–1040, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hirsch, J., Marin, E., Floriani, M., Chiarenza, S., Richaud, P., Nussaume, L., Thibaud, M.C.: Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. — Biochimie 88: 1767–1771, 2006.CrossRefPubMedGoogle Scholar
  16. Jain, A., Poling, M.D., Smith, A.P., Nagarajan, V.K., Lahner, B., Meaghe,r R.B., Raghothama, K.G.: Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients. — Plant Physiol. 150: 1033–1049, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kisko, M., Bouain, N., Rouached, A., Choudhary, S.P., Rouached, H.: Molecular mechanisms of phosphate and zinc signalling crosstalk in plants: phosphate and zinc loading into root xylem in Arabidopsis. — Environ. exp. Bot. 114: 57–64, 2015.CrossRefGoogle Scholar
  18. Lambers, H., Hayes, P.E., Laliberté, E., Oliveira, R.S., Turner, B.L.: Leaf manganese accumulation and phosphorusacquisition efficiency. — Trends Plant Sci. 20: 83–90, 2015.CrossRefPubMedGoogle Scholar
  19. Lambers, H., Shane, M.W., Cramer, M.D., Pearse, S.J., Veneklaas, E.J.: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. — Ann. Bot. 98: 693–713, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Müller, J., Toev, T., Heisters, M., Teller, J., Moore, K.L., Hause, G., Dinesh, D.C., Bürstenbinder, K., Abel, S.: Irondependent callose deposition adjusts root meristem maintenance to phosphate availability. — Dev. Cell 33: 216–230, 2015.CrossRefPubMedGoogle Scholar
  21. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–479, 1962.CrossRefGoogle Scholar
  22. Ogawa, S., Valencia, M., Ishitani, M., Selvaraj, M.: Root system architecture variation in response to different NH4 + concentrations and its association with nitrogen-deficient tolerance traits in rice. — Acta Physiol Plant 36: 2361–2372, 2014.CrossRefGoogle Scholar
  23. Péret, B., Desnos, T., Jost, R., Kanno, S., Berkowitz, O., Nussaume, L.: Root architecture responses: in search of phosphate. — Plant Physiol. 166: 1713–1723, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Somerville, C.R., Ogren, W.: Isolation of photorespiration mutants in Arabidopsis thaliana. -In: Edelman, M. (ed.): Methods in Chloroplast Biology. Pp. 129–138. Elsevier Biomedical Press, Amsterdam 1982.Google Scholar
  25. Stefanovic, A. Ribot, C., Rouached, H., Wang, Y., Chong, J., Belbahri, L., Delessert, S., Poirie, Y: Members of the pho1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. - Plant J. 50: 982–994, 2007.CrossRefPubMedGoogle Scholar
  26. Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L., Desnos, T.: Root tip contact with low-phosphate media reprograms plant root architecture. — Nat. Genet. 39: 792–796, 2007.CrossRefPubMedGoogle Scholar
  27. Vitha, S., Benes, K., Phillips, J.P., Gartland, K.M.A.: Histochemical GUS analysis. - In: Gartland, K.M.A., Davey, M.R. (ed.): Agrobacterium Protocols. Pp. 185–193. Humana Press, Totowa 1995.CrossRefGoogle Scholar
  28. Ward, J.T., Lahne,r B., Yakubova, E., Salt, D.E., Raghothama, K.G.: The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. — Plant Physiol. 147: 1181–1191, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zheng, L., Huang, F., Narsai, F., Wu, J., Giraud, E., He, F., Cheng, L., Wang, F., Wu, P., Whelan, J., Shou, H.: Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. — Plant Physiol. 151: 262–274, 2009.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2017

Authors and Affiliations

  • M. L. Strieder
    • 1
    • 2
    • 4
  • K. G. Pinto
    • 1
    • 2
  • C. Bertoldi
    • 1
  • A. de B. Schneider
    • 1
    • 3
  • C. A. Delatorre
    • 1
  1. 1.Department of Crop ScienceFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Institute of Developmental GeneticsHeinrich Heine UniversityDüsseldorfGermany
  3. 3.Department of Bioinformatics and GenomicsUniversity of North CarolinaCharlotteUSA
  4. 4.Embrapa WheatPasso FundoBrazil

Personalised recommendations