Advertisement

Biologia Plantarum

, Volume 60, Issue 3, pp 505–512 | Cite as

Molecular characterization and phylogenetic analysis of Wx genes from three Taeniatherum diploid species

  • S. F. Dai
  • J. Q. Jiang
  • Y. N. Jia
  • X. F. Xue
  • D. C. Liu
  • Y. M. Wei
  • Y. L. Zheng
  • Z. H. YanEmail author
Original papers
  • 142 Downloads

Abstract

In wheat seeds, starch synthase I or the Waxy protein is an enzyme involved in amylose synthesis. The gene encoding this enzyme is Wx and in this study, eight novel Wx alleles were identified in three diploid Taeniatherum species. The variability of these alleles was evaluated, and their nucleotide sequences were compared with those of homologous alleles from wheat. Two types of Taeniatherum Wx alleles were detected in three diploid species Ta. caput-medusae, Ta. asperum, and Ta. crinitum. A phylogenetic analysis indicates that the Taeniatherum Wx alleles were more closely related to Wx alleles from Aegilops species with C, D, M, and U genomes than to Wx alleles of other species. These alleles represent a potential genetic resource that may be useful in wheat breeding programs.

Additional key words

amylose starch Triticum aestivum Waxy protein 

Abbreviations

pI

isoelectric point

MYA

million years ago

Wx

waxy

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2016_609_MOESM1_ESM.pdf (7.2 mb)
Supplementary material, approximately 7374 KB.

References

  1. Ainsworth, C., Clark, J., Balsdon, J.: Expression, organisation and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. — Plant. mol. Biol. 22: 67–82, 1993.CrossRefPubMedGoogle Scholar
  2. Caballero, L., Bancel, E., Debiton, C., Branlard, G.: Granule bound starch synthase (GBSS) diversity of ancient wheat and related species. — Plant. Breed. 127: 548–553, 2008.CrossRefGoogle Scholar
  3. Chao, S., Sharp, P.J., Worland, A.J., Warham, E.J., Koebner, R.M.D., Gale, M.D.: RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. — Theor. appl. Genet. 78: 495–504, 1989.CrossRefPubMedGoogle Scholar
  4. Dai, S.F., Pu, Z.J., Liu, D.C., Wei, Y.M., Zheng, Y.L., Hu, X.K., Yan, Z.H.: Characterization of novel HMW-GS in two diploid species of Eremopyrum. — Gene 519: 55–59, 2013.CrossRefPubMedGoogle Scholar
  5. Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from fresh tissue. — Focus 12: 13–15, 1990.Google Scholar
  6. Dvořák, J., Akhunov, E.D.: Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. — Genetics 171: 323–332, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dvořák, J., Luo, M.C., Yang, Z.L., Zhang, H.B.: The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. — Theor. appl. Genet. 97: 657–670, 1998.CrossRefGoogle Scholar
  8. Dvořák, J., Zhang, H.B.: Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. — Theor. appl. Genet. 84: 419–429, 1992.PubMedGoogle Scholar
  9. Frederiksen, S.: Revision of Taeniatherum (Poaceae). — Nordic J. Bot. 6: 389–397, 1986.CrossRefGoogle Scholar
  10. Frederiksen, S., Von Bothmer, R.: Intergeneric hybridization between Taeniatherum and different genera of Triticeae, Poaceae. — Nordic J. Bot. 9: 229–240, 1989.CrossRefGoogle Scholar
  11. Frederiksen, S., Von Bothmer, R.: Relationships in Taeniatherum (Poaceae). — Can. J. Bot. 64: 2343–2347, 1986.CrossRefGoogle Scholar
  12. Guzmán, C., Alvarez, J.B.: Molecular characterization of a novel waxy allele (Wx-Au1a) from Triticum urartu Thum. ex Gandil. — Genet. Resour. Crop Evol. 59: 971–979, 2012.CrossRefGoogle Scholar
  13. Guzmán, C., Caballero, L., Alvarez, J.B.: Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determined by morphological traits and waxy proteins. — Genet. Resour. Crop Evol. 56: 601–604, 2009.CrossRefGoogle Scholar
  14. Guzmán, C., Caballero, L., Martín, L.M., Alvarez, J.B.: Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species. — Ann. Bot. 110: 1161–1171, 2012a.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guzmán, C., Caballero, L., Yamamori, M., Alvarez, J.B.: Molecular characterization of a new waxy allele with partial expression in spelt wheat. — Planta 235: 1331–1339, 2012b.CrossRefPubMedGoogle Scholar
  16. Guzmán, C., Ortega, R., Yamamori, M., Pena, R.J., Alvarez, J.B.: Molecular characterization of two null Waxy alleles in Mexican Bread wheat landraces. — J. Cereal Sci. 62: 8–14, 2015.CrossRefGoogle Scholar
  17. Ingram, A.L., Doyle, J.J.: The origin and evolution of Eragrostis tef (Poaceae) and related polyploids: evidence from nuclear waxy and plastid rps16. — Amer. J. Bot. 90: 116–122, 2003.CrossRefGoogle Scholar
  18. Kihara, H.: Discovery of the DD analyser, one of the ancestors of Triticum vulgare. — Agr. Hort. 19: 13–14, 1944.Google Scholar
  19. Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., Hammer, K., Özkan, H.: Aegilops. - In: Kole, C. (ed.): Wild Crop Relatives: Genomic and Breeding Resources: Cereals. Pp. 1–76, Springer, Berlin - Heidelberg 2011.CrossRefGoogle Scholar
  20. Li, W., Gao, Z., Xiao, W., Wei, Y.M., Liu, Y.X., Chen, G.Y., Pu, Z.E., Chen, H.P., Zheng, Y.L.: Molecular diversity of restriction enzyme sites, Indels and upstream open reading frames (uORFs) of 5′ untransalted regions (UTRs) of Waxy genes in Triticum L. and Aegilops L. species. — Genet. Resour. Crop Evol. 59: 1625–1647, 2012.CrossRefGoogle Scholar
  21. Librado, P., Rozas, J.: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. — Bioinformatics 25: 1451–1452, 2009.CrossRefPubMedGoogle Scholar
  22. Liu, Y.X., Li, W., Wei, Y.M., Chen, G.Y., Zheng, Y.L.: Molecular characterization of the Waxy gene in einkorn wheat. — J. Plant Sci. 4: 114–121, 2009.CrossRefGoogle Scholar
  23. Maestra, B, Naranjo, T.: Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. — Theor. appl. Genet. 97: 181–186, 1998.CrossRefGoogle Scholar
  24. Mason-Gamer, R.J.: Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule bound starch synthase gene sequences. — Syst. Bot. 26: 757–768, 2001.Google Scholar
  25. Mason-Gamer, R.J., Weil, C.F., Kellogg, E.A.: Granule-bound starch synthase: structure, function, and phylogenetic utility. — Mol. biol. Evol. 15: 1658–1673, 1998.CrossRefPubMedGoogle Scholar
  26. Morell, M.K., Rahman, S., Alrahams, S.L., Appeles, R.: The biochemistry and molecular biology of starch synthesis in cereals. — Aust. J. Plant Physiol. 22: 647–660, 1995.CrossRefGoogle Scholar
  27. Murai, J., Taira, T., Ohta, D.: Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. — Gene 234: 71–79, 1999.CrossRefPubMedGoogle Scholar
  28. Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S.: Identification of three Wx proteins in wheat (Triticum aestivum L.). — Biochem. Genet. 31: 75–86, 1993.CrossRefPubMedGoogle Scholar
  29. Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S.: Production of waxy (amylose-free) wheats. — Mol. gen. Genet. 248: 253–259, 1995.CrossRefPubMedGoogle Scholar
  30. Ortega, R., Alvarez, J.B., Guzmán, C.: Characterization of the Wx gene in diploid Aegilops species and its potential use in wheat breeding. — Genet. Resour. Crop Evol. 61: 369–382, 2014a.CrossRefGoogle Scholar
  31. Ortega, R., Guzmán, C., Alvarez, J.B.: Wx gene in diploid wheat: molecular characterization of five novel alleles from enikorn (Triticum monococcum L. ssp. monococcum) and T. urartu. — Mol. Breed. 34: 1137–1146, 2014b.CrossRefGoogle Scholar
  32. Rodriguez-Quijano, M., Nieto-Taladriz, M.T., Carrillo, J.M.: Polymorphism of waxy proteins in Iberian hexaploid wheats. — Plant. Breed. 117: 341–344, 1998.CrossRefGoogle Scholar
  33. Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., Ng, P.C.: SIFT web server: predicting effects of amino acid substitutions on proteins. — Nucl. Acids Res. 40: W452–W457, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tajima, F.: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. — Genetics 123: 585–595, 1989.PubMedPubMedCentralGoogle Scholar
  35. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. — Mol. Biol. Evol. 28: 2731–2739, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Urbano, M., Margiotta, B., Colaprico, G., Lafiandra, D.: Waxy proteins in diploid, tetraploid and hexaploid wheats. — Plant. Breed. 121: 465–469, 2002.CrossRefGoogle Scholar
  37. Wang, S., Li, X., Wang, K., Wang, X., Li, S., Zhang, Y., Guo, G., Zeller, F.J., Hsam, S.L.K., Yan, Y., Gustafson, P.: Phylogenetic analysis of C, M, N, and U genomes and their relationships with Triticum and other related genomes as revealed by LMW-GS genes at Glu-3 loci. — Genome 54: 273–284, 2011.CrossRefPubMedGoogle Scholar
  38. Yamamori, M.: Amylose content and starch properties generated by five variant Wx alleles for granule-bound starch synthase in common wheat (Triticum aestivum L.). — Euphytica 165: 607–614, 2009.CrossRefGoogle Scholar
  39. Yamamori, M., Nakamura, T., Endo, T.R., Nagamine, T.: Waxy protein deficiency and chromosomal location of coding genes in common wheat. — Theor. appl. Genet. 89: 179–184, 1994.CrossRefPubMedGoogle Scholar
  40. Yamamori, M., Nakamura, T., Nagamine, T.: Ploymorphism of two waxy proteins in the emmer group of tetraploid wheat, Triticum dococcoides, T. dicoccum and T. durum. — Plant. Breed. 114: 215–218, 1995.CrossRefGoogle Scholar
  41. Yamamori, M., Yamamoto, K.: Effects of two novel Wx-A1 alleles of common wheat (Triticum aestivum L.) on amylose and starch properties. — J. Cereal Sci. 54: 229–235, 2011.CrossRefGoogle Scholar
  42. Yan, L., Bhave, M., Fairclough, R., Konik, C., Rahman, S., Appels, R.: The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat. — Genome 43: 264–272, 2000.CrossRefPubMedGoogle Scholar
  43. Yan, L., Bhave, M.: Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat. — Genome 44: 582–588, 2001.CrossRefPubMedGoogle Scholar
  44. Zeng, M., Morris, C.F., Batey, I.L., Wrigley, C.W.: Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. — Cereal Chem. 74: 63–71, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • S. F. Dai
    • 1
  • J. Q. Jiang
    • 1
  • Y. N. Jia
    • 1
  • X. F. Xue
    • 1
  • D. C. Liu
    • 1
  • Y. M. Wei
    • 1
  • Y. L. Zheng
    • 1
  • Z. H. Yan
    • 1
    Email author
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityChengdu, SichuanP.R. China

Personalised recommendations