Biologia Plantarum

, Volume 60, Issue 1, pp 13–24 | Cite as

Practical guidelines for the characterization of tobacco BY-2 cell lines

  • M. SrbaEmail author
  • A. Černíková
  • Z. Opatrný
  • L. Fischer
Original Papers


Plant cell lines represent useful models in plant cell biology. They allow simple analysis of the effects of various factors including modulated gene expression at cellular and subcellular levels. The tobacco BY-2 cell line is a favoured model due to its high proliferation rate, capability of effective synchronization, and accessibility to transformation. A relatively high uniformity of BY-2 cultures allows morphological phenotyping and assessment of growth parameters like mitotic index, viability, or cell density. Here we review already published and newly introduced optimized guidelines to carry out reliable, reproducible and efficient characterization of BY-2 cultures from suggestions of appropriate methods to acquire primary data, proper statistical treatment, and biological interpretation. The presented experimental data demonstrate the extent of natural variability and the effect of initial cell density on various cell culture features. Supportive equations allow to estimate some derived phenotypic parameters like cell cycle duration or fresh biomass of the culture and to determine the size of data sets for reliable documentation of a certain phenotypic change. The optimized protocols and accompanying discussion of weak points of different approaches should serve as practical guide for both beginners and experienced researchers working on BY-2 cells.

Additional key words

cytology functional genomics Nicotiana tabacum plant cell phenotyping transgenic plants 



2,4-dichlorophenoxyacetic acid


coefficient of variation


differential interference contrast microscopy


fluorescein diacetate


mitotic index


subculture interval


standard deviation




wild type


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2015_573_MOESM1_ESM.pdf (375 kb)
Supplementary material, approximately 375 KB.


  1. Brown, R., Rickless, P.: A new method for the study of cell division and cell extension with some preliminary observations on the effect of temperature and of nutrients. — Proc. roy. Soc. London B Biol. Sci. 136: 110–125, 1949.CrossRefGoogle Scholar
  2. Campanoni, P., Blasius, B., Nick, P.: Auxin transport synchronizes the pattern of cell division in tobacco cell line. — Plant Physiol. 133: 1251–1260, 2003.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Chow, S.C., Shao, J., Wang, H. (ed.): Sample Size Calculations in Clinical Research. — Marcel Dekker, New York 2003.Google Scholar
  4. David, K.M., Perrot-Rechenmann, C.: Characterization of a tobacco Bright Yellow 2 cell line expressing the tetracycline repressor at a high level for strict regulation of transgene expression. — Plant Physiol. 125: 1548–1553, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Dayan, A.D., Paine, A.J.: Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. — Human exp. Toxicol. 20: 439–451, 2001.CrossRefGoogle Scholar
  6. Dvorakova, L., Srba, M., Opatrny, Z., Fischer, L.: Hybrid proline-rich proteins: novel players in plant cell elongation? — Ann. Bot. 109: 453–462, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Fay, D.S., Gerow, K.: A biologist’s guide to statistical thinking and analysis. — In: WormBook: the Online Review of C. elegans Biology. Pp. 1–54. The C. elegans Research Community, published on-line 2013.Google Scholar
  8. Granger, C.L., Cyr, R.J.: Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD. — Planta 210: 502–509, 2000.CrossRefPubMedGoogle Scholar
  9. Hoaglin, D.C., Mosteller, F., Tukey, F.W. (ed.): Exploring Data Tables, Trends, and Shapes. — John Willey & Sons. New York 2011.Google Scholar
  10. Hofmannova, J., Schwarzerova, K., Havelkova, L., Borikova, P., Petrasek, J., Opatrny, Z.: A novel, cellulose synthesis inhibitory action of ancymidol impairs plant cell expansion. — J. exp. Bot. 59: 3963–3974, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Johansen, D.A. (ed.): Plant Microtechnique. — McGraw-Hill Book Co., New York - London 1940.Google Scholar
  12. Koukalova, B., Kovarik, A., Fajkus, J., Siroky, J.: Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. — FEBS Lett. 414: 289–292, 1997.CrossRefPubMedGoogle Scholar
  13. Kouri, T., Gyory, A., Rowan, R.M.: ISLH recommended reference procedure for the enumeration of particles in urine. — Lab. Hematol. 9: 58–63, 2003.PubMedGoogle Scholar
  14. Kovarik, A., Lim, K. Y., Souckova-Skalicka, K., Matyasek, R., Leitch, A. R.: A plant culture (BY-2) widely used in molecular and cell studies is genetically unstable and highly heterogeneous. — Bot. J. Linn. Soc. 170: 459–471, 2012.CrossRefGoogle Scholar
  15. Krtkova, J., Havelkova, L., Krepelova, A., Fiser, R., Vosolsobe, S., Novotna, Z., Martinec, J., Schwarzerová, K.: Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in Arabidopsis thaliana. — Plant Physiol.Biochem. 60: 88–97, 2012.CrossRefPubMedGoogle Scholar
  16. Kumagai-Sano, F., Hayashi, T., Sano, T., Hasezawa, S.: Cell cycle synchronization of tobacco BY-2 cells. — Nature Protocols 1: 2621–2627, 2007.CrossRefGoogle Scholar
  17. Kuthanova, A., Fischer, L., Nick, P., Opatrny, Z.: Cell cycle phase specific death response of tobacco BY-2 cell line to cadmium treatment. — Plant Cell Environ. 31: 1634–1643, 2008.CrossRefPubMedGoogle Scholar
  18. Kutík, J., Kuthanová, A., Smertenko, A., Fischer L., Opatrný, Z.: Cadmium-induced cell death in BY-2 cell culture starts with vacuolization of cytoplasm and terminates with necrosis. — Physiol. Plant. 151: 423–433, 2014.CrossRefPubMedGoogle Scholar
  19. Kutsuma, N., Hasezawa, S.: Dynamic organization of vacuolar and microtubule structures during cell cycle progression in synchronized tobacco BY-2 cells. — Plant Cell Physiol. 43; 965–973, 2002.CrossRefGoogle Scholar
  20. Laporte, C., Vetter, G., Loudes, A.M., Robinson, D.G., Hillmer, S., Stussi-Garaud, C., Ritzenthaler, C.: Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 cells. — Plant Cell 15; 2058–2078, 2003.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Maisch, J., Fiserova, J., Fischer, L., Nick, P.: Tobacco Arp 3 is localized to actin-nucleating sites in vivo. — J. exp. Bot. 60; 603–614, 2009.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Maisch, J., Nick, P.: Actin is involved in auxin-dependent patterning. — Plant Physiol. 143: 1695–1704, 2007.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Matsuoka, K., Demura, T., Galis, I., Horiguchi, T., Sasaki, M., Tashiro, G., Fukuda, H.: A comprehensive gene expression analysis toward the understanding of growth and differentiation of tobacco BY-2 cells. — Plant Cell Physiol. 45: 1280–1289, 2004.CrossRefPubMedGoogle Scholar
  24. Milliken, G.A., Johnson, D.E. (ed.): Analysis of Messy Data; Volume 1 Designed Experiments. — Van Nostrand Reinhold, New York 1984.Google Scholar
  25. Murashige, T., Skoog, F.: A revised medium for rapid growth and bio assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  26. Nagata, T.: When I encountered tobacco BY-2 cells! — In; Nagata T., Hasezawa S., Inzé D. (ed.) Tobacco BY-2 Cells. (Biotechnology in Agriculture and Forestry Volume 53). Pp. 1–5, Springer, Berlin - Heidelberg 2004.Google Scholar
  27. Nagata, T., Kumagai, T.: Plant Cell biology through the window of the higly synchronized tobacco BY-2 cell line. — Methods Plant Sci. 21: 123–127, 1999.Google Scholar
  28. Nagata, T., Matsuoka, K., Inze, D. (ed.): Tobacco BY-2 Cells; From Cellular Dynamics to Omics. (Biotechnology, Agriculture and Forestry. Vol. 58.) — Springer, Berlin -Heidelberg 2006.Google Scholar
  29. Nagata, T., Nemoto, Y., Hasezawa, S.: Tobacco BY-2 cell line as the ‘HeLa’ cells in the cell biology of higher plants. — Int. Rev. Cytol. 132: 1–30, 1992.CrossRefGoogle Scholar
  30. Němec, B. (ed.): [Botanical Microtechnics]. — Nakladatelství Československé Akademie Věd, Praha 1962. [In Czech]Google Scholar
  31. Nocarova, E., Fischer, L.: Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression. — BMC Plant Biol. 9; 44–55, 2009.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Opatrny, Z., Opatrna, J.: The specificity of the effect of 2,4-D and NAA on the growth, micromorphology, and occurence of starch in long-term Nicotiana tabacum L. cell strains. — Biol. Plant. 18: 359–365, 1976.CrossRefGoogle Scholar
  33. Opatrny, Z., Nick, P., Petrasek, J.: Plant cell strains in fundamental research and applications. — In: Nick P., Opatrný Z. (ed.): Applied Plant Cell Biology. Pp. 455–481. Springer, Heidelberg - New York - Dordrecht - London 2014.CrossRefGoogle Scholar
  34. Orchard, C.B., Siciliano, I., Sorrell, D.A., Marchbank, A., Rogers, H.J., Francis, D., Herbert, R.J., Suchomelova, P., Lipavska, H., Azmi, A., Van Onckelen, H.: Tobacco BY-2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cycle. — Plant J. 44: 290–299, 2005.CrossRefPubMedGoogle Scholar
  35. Pieruschka, R., Poorter, H.: Phenotyping plants: genes, phenes and machines. — Funct. Plant Biol. 39: 813–820, 2012.CrossRefGoogle Scholar
  36. Richard, C., Granier, C., Inzé, D., De Veylder, L.: Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions. — J. exp. Bot. 52: 1625–1633, 2001.CrossRefPubMedGoogle Scholar
  37. Samuels, A., Meehl, J., Lipe, M., Staehelin, L.A.: Optimizing conditions for tobacco BY-2 cell cycle synchronization. — Protoplasma 202: 232–236, 1998.CrossRefGoogle Scholar
  38. Sato, F.: Characterization of plant functions using cultured plant cells, and biotechnological applications. — Biosci. Biotechnol. Biochem. 77: 1–9, 2013.CrossRefPubMedGoogle Scholar
  39. Schaul, O., Mironov, V., Burssens, S., Van Montagu, M., Inze, D.: Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells. — Proc. nat. Acad. Sci. USA 93: 4868–4872, 1996.CrossRefGoogle Scholar
  40. Schwarzerova, K., Pokorna, J., Petrasek, J., Zelenkova, S., Capkova, V., Janotova, I., Opatrny, Z.: The structure of cortical cytoplasm in cold-treated tobacco cells: the role of the cytoskeleton and the endomembrane system. — Cell Biol. Int. 27: 263–265, 2003.CrossRefPubMedGoogle Scholar
  41. Seifertova, D., Klima, P., Parezova, M., Petrasek, J., Zazimalova, E., Opatrny, Z.: Plant cell lines in cell morphogenesis research. — In: Zarsky, V., Cvrckova, F. (ed.): Plant Cell Morphogenesis. Pp. 215–229, Springer, New York - Heidelberg - Dordrecht - London 2014.CrossRefGoogle Scholar
  42. Seth, J.D., Vierstra, R.D.: Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. — Plant mol. Biol. 36: 521–528, 1998.CrossRefGoogle Scholar
  43. Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C., Murray, J.A.H.: Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco Bright Yellow-2 cells. — Plant Physiol. 119: 343–351. 1999.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Sorrell, D.A., Menges, M., Healy, J.S., Deveaux, Y., Amano, C., Su, Y., Nakagami, H., Shinmyo, A., Doonan, A.H., Sekine, M., Murray, J.A.: Cell cycle regulation of cyclindependent kinases in tobacco cultivar Bright Yellow-2 cells. — Plant Physiol. 126: 1214–1223, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Stewart, C.N.: The utility of green fluorescent protein in transgenic plants. — Plant Cell Rep. 20: 376–382, 2001.CrossRefPubMedGoogle Scholar
  46. Wang, H., Chow, S.C.: Sample size calculation for comparing proportions. — In: D’Agostino, R., Massaro, J., Sullivan, L. (ed.): Wiley Encyclopedia of Clinical Trials. Pp. 1–11. John Wiley & Sons, New York 2007.Google Scholar
  47. Widholm, J.M.: The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. — Biotech. Histochem. 47: 189–194, 1972.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Srba
    • 1
    Email author
  • A. Černíková
    • 2
  • Z. Opatrný
    • 1
  • L. Fischer
    • 1
  1. 1.Department of Experimental Plant Biology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  2. 2.Institute of Applied Mathematics and Information Technologies, Faculty of ScienceCharles University in PraguePragueCzech Republic

Personalised recommendations