Advertisement

Biologia Plantarum

, Volume 60, Issue 1, pp 123–131 | Cite as

Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes

  • M. F. Li
  • S. J. Guo
  • X. H. Yang
  • Q. W. Meng
  • X. J. Wei
Original Papers

Abstract

Gamma-aminobutyric acid (GABA) is a non-protein amino acid that accumulates in a number of plant species under various environmental stresses. In this paper, the ability of applied GABA for the alleviation of NaCl stress was investigated in view of growth parameters, gas exchange, photosynthetic pigments, chlorophyll fluorescence, activities of antioxidant enzymes, malondialdehyde (MDA) content, and electrolyte conductivity (REC) in wheat seedlings. Germination rate and shoot dry mass decreased with an increasing NaCl concentration and this decrease was less pronounced when 0.5 mM GABA was applied. In the NaCl-treated seedlings, exogenous GABA partially enhanced photosynthetic capacity and antioxidant enzyme activities and decreased MDA content and REC. Therefore, GABA reduced the impact of salinity on the wheat seedlings.

Additional key words

catalase electrolyte leakage lipid peroxidation malondialdehyde superoxide dismutase Triticum aestivum 

Abbreviations

ΦPSII

actual photosystem II efficiency

CAT

catalase, Chl-chlorophyll

ci

intercellular CO2 concentration

E

transpiration rate

EDTA

ethylenediaminetetraacetic acid

Fm

maximum fluorescence induction

Fv

variable fluorecence

GABA

γ-aminobutyric acid

gS

stomatal conductance

MDA

malondialdehyde

NPQ

non-photochemical quenching

PN

net photosynthesis rate

PS

photosystem

Rc

electric conductivity

REC

relative electrolyte conductivity

ROS

reactive oxygen species

SOD

superoxide dismutase

WUE

water use efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abogadallah, G.M.: Antioxidative defense under salt stress. — Plant Signal. Behav. 5: 369–374, 2011.CrossRefGoogle Scholar
  2. Allan W.L., Simpson J.P., Clark S.M., Shelp B.J.: Gammahydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. — J. exp. Bot. 59: 2555–2564, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.CrossRefPubMedGoogle Scholar
  4. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–10, 1949.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Arnon, D.I., Hoagland, D.R.: Crop production in artificial solutions and in soil with special reference to factors affecting yields and absorption of inorganic nutrients. — Soil Sci. 50: 463–484, 1940.Google Scholar
  6. Asada, K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. — Plant Physiol. 141: 391–396, 2006.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bajji, M., Lutts, S., Kinet, J.M.: Water deficit effect on solution contribution to osmotic adjustment as a function of leaf ageing in three durum wheat ( Triticum durum Desf.) cultivars performing differently in arid conditions. — Plant Sci. 160: 669–681, 2001.CrossRefPubMedGoogle Scholar
  8. Bouché, N., Fromm, H.: GABA in plants: just a metabolite? — Trends Plant Sci. 9: 110–115, 2004.CrossRefPubMedGoogle Scholar
  9. Bown, A.W., Mac Gregor, K.B., Shelp, B.J.: Gammaaminobutyrate: defense against invertebrate pests? — Trends Plant Sci. 11: 424–427, 2006.CrossRefPubMedGoogle Scholar
  10. Breitkreuz, K.E., Shelp, B.J.: Subcellular compartmentation of the 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons. — Plant Physiol. 108: 99–103, 1995.PubMedCentralPubMedGoogle Scholar
  11. Breitkreuz, K.E., Shelp, B.J., Fischer, W.N., Schwacke, R., Rentsch, D.: Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. — FEBS Lett. 450: 280–284, 1999.CrossRefPubMedGoogle Scholar
  12. Calatayud, A., Barreno, E.: Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments, and lipid peroxidation. — Plant Physiol. Biochem. 42: 549–555, 2004.CrossRefPubMedGoogle Scholar
  13. Cao, S.F., Cai, Y.T., Yang, Z.F., Zheng, Y.H.: MeJA induces chilling tolerance in loquat fruit by regulating proline and γ-aminobutyric acid contents. — Food Chem. 133: 1466–1470, 2012.CrossRefGoogle Scholar
  14. Carapito, R., Hatsch, D., Vorwerk, S., Petkovski, E., Jeltsch, J.M., Phalip, V.: Gene expression in Fusarium graminearum grown on plant cell wall. — Fungal Genet. Biol. 45: 738–748, 2008.CrossRefPubMedGoogle Scholar
  15. Cho, K., Shibato, J., Agrawal, G.K., Jung, Y.H., Kubo, A., Jwa, N.S., Tamogami, S., Satoh, K., Kikuchi, S., Higashi, T.: Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. — J. Proteome Res. 7: 2980–2998, 2008.CrossRefPubMedGoogle Scholar
  16. Chung, H.J., Jang, S.H., Cho, H.Y., Lim, S.T.: Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley. — LWT Food Sci. Technol. 42: 1712–1716, 2009.CrossRefGoogle Scholar
  17. Cuin, Y.A., Shabala, S.: Compatible solutes reduce ROSinduced potassium efflux in Arabidopsis roots. — Plant Cell Environ. 30: 875–885, 2007.CrossRefPubMedGoogle Scholar
  18. Debez, A., Koyro, H.W., Grignon, C., Abdelly, C., Huchzermeyer, B.: Relationship between the photosynthetic activity and the performance of Cakile maritime after longterm salt treatment. — Physiol. Plant. 133: 373–385, 2008.CrossRefPubMedGoogle Scholar
  19. Demidchik, V., Cuin, T.A., Svistunenko, D., Smith, S.J., Miller, A.J., Shabala, S., Sokolik, A., Yurin, V.: Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. — J. cell. Sci. 123: 1468–1479, 2010.CrossRefPubMedGoogle Scholar
  20. Dionisio-Sese, M.L., Tobita, S.: Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. — J. Plant Physiol. 157: 54–58, 2000.CrossRefGoogle Scholar
  21. Fait, A., Fromm, H., Walter, D., Galili, G., Fernie, A.R.: Highway or byway: the metabolic role of the GABA shunt in plants. — Trends Plant Sci. 13: 14–19, 2007.CrossRefPubMedGoogle Scholar
  22. Flexas, J., Medrano, H.: Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. — Ann. Bot. 89: 183–189, 2002.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Foyer, C.H., Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. — Plant Cell 17: 1866–1875, 2005.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Havaux, M., Lutz, C., Grimm, B.: Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. — Plant Physiol. 132: 300–310, 2003.PubMedCentralCrossRefPubMedGoogle Scholar
  25. He, Y., Zhu, Z.J., Yang, J., Ni, X.L., Zhu, B.: Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. — Environ. exp. Bot. 66: 270–278, 2009.CrossRefGoogle Scholar
  26. Jiang, Q., Roche, D., Monaco, T.A., Hole, D.: Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. — Plant Biol. 8: 515–521, 2006.CrossRefPubMedGoogle Scholar
  27. Karaba, A., Dixit, S., Greco, R., Aharoni, A., Trijatmiko, K.R., Marsch-Martinez, N., Krishnan, A., Nataraja, K.N., Udayakumar, M., Pereira, A.: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. — Proc. nat. Acad. Sci. USA 104: 15270–15275, 2007.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Kathiresan, A., Miranda, J., Chinnappa, C.C., Reid, D.M.: Gamma-aminobutyric acid promotes stem elongation in Stellaria longipes: the role of ethylene. — Plant Growth Regul. 26: 131–37, 1998.CrossRefGoogle Scholar
  29. Kato-Noguchi, H., Ohashi, C.: Anoxic accumulation of amino acids in rice coleoptiles. — Environ. Control Biol. 43: 291–294, 2005.CrossRefGoogle Scholar
  30. Kazuhito, A., Fumio, T.: C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. — J. exp. Bot. 58: 2699–2707, 2007.CrossRefGoogle Scholar
  31. Kim, D.W., Shibato, J., Agrawal, G.K., Fujihara, S., Iwahashi, H., Kim, du H., Shim, I.S., Rakwal, R.: Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). — Mol. Cells 24: 45–59, 2007.PubMedGoogle Scholar
  32. Kinnersley, A.M., Turano, F.J.: Gamma aminobutyric acid (GABA) and plant responses to stress. — Crit. Rev. Plant Sci. 19: 479–509, 2000.CrossRefGoogle Scholar
  33. Laurent, B., Zhentian, L., Marc, L., Seth, F., Masayuki, S.M.J., Sadowsky, L.W.S., Gary, S.: Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. — Plant Physiol. 153: 1808–1822, 2010.CrossRefGoogle Scholar
  34. Li, Y., Bai, Q.Y., Jin, X.J., Wen, H.B., Gu, Z.X.: Effects of cultivar and culture conditions on gamma-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). — J. Sci. Food Agr. 90: 52–57, 2010.CrossRefGoogle Scholar
  35. Liu, Y. D., Yin, Z.J., Yu, J.W., Li, J., Wei, H.L., Han, X.L., Shen, F.F.: Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. — Biol. Plant. 56: 237–246, 2012.CrossRefGoogle Scholar
  36. Lu, C., Qiu, N., Wang, B., Zhang, J.: Salinity treatment shows no effects on photosystem II photochemistry but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. — J. exp. Bot. 54: 851–860, 2003.CrossRefPubMedGoogle Scholar
  37. Lu, J., Li, X.N., Yang, Y.L., Jia, L.Y., You, J., Wang, W.R.: Effect of hydrogen peroxide on seedling growth and antioxidants in two wheat cultivars. — Biol. Plant. 57: 487–494, 2013.CrossRefGoogle Scholar
  38. Lutts, S., Kinet, J.M., Bouharmont, J.: Effect of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. — Plant Growth Regul. 19: 207–218, 1996.CrossRefGoogle Scholar
  39. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  40. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.CrossRefPubMedGoogle Scholar
  41. Munns, R., James, R.A., Läuchli, A.: Approaches to increasing the salt tolerance of wheat and other cereals. — J. exp. Bot. 57: 1025–1043, 2005.CrossRefGoogle Scholar
  42. Naumann, J.C., Young, D.R., Anderson, J.E.: Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. — Physiol. Plant. 131: 422–433, 2007.CrossRefPubMedGoogle Scholar
  43. Nayyar, H.: γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. — J. Plant Growth Regul. 33: 408–419, 2014.CrossRefGoogle Scholar
  44. Netondo, G.W., Onyango, J.C., Beck, E.: Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. — Crop Sci. 44: 806–811, 2004.CrossRefGoogle Scholar
  45. Palanivelu, R., Brass, L., Edlund, A.F., Preuss, D.: Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. — Cell 114: 47–59, 2003.CrossRefPubMedGoogle Scholar
  46. Redondo-Gómez, S., Mateos-Naranjo, E., Davy, A.J., Fernandez-Munoz, F., Castellanos, E.M., Luque, T., Figueroa, M.E.: Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. — Ann. Bot. 100: 555–563, 2007.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Renault, H., Roussel, V., Amrani, A.E.I., Arzel, M., Renault, D., Bouchereau, A., Deleu, C.: The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. — BMC Plant Biol. 10: 20, 2010.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Reyes-García, M.G., Hernández-Hernández F., García-Tamayo F.: Gamma-aminobutyric acid (GABA) increases in vitro germ-tube formation and phospholipase B1 mRNA expression in Candida albicans. — Mycoscience 53: 36–39, 2012.CrossRefGoogle Scholar
  49. Roberts, M.R.: Does GABA act as a signal in plants? — Plant Signal. Behav. 5: 408–409, 2007.CrossRefGoogle Scholar
  50. Sara, P., Armelle, V., Samue, M., Magali, N., Denis, F., Solange, M.: A conserved mechanism of GABA binding and antagonism is revealed by structure-function analysis of the periplasmic binding protein Atu2422 in Agrobacterium tumefaciens. — J. biol. Chem. 285: 30294–30303, 2010.CrossRefGoogle Scholar
  51. Scandalios, J.G.: Oxygen stress and superoxide dismutases. — Plant Physiol. 101: 7–12, 1993.PubMedCentralPubMedGoogle Scholar
  52. Shang, H.T., Cao, S.F., Yang, Z.F., Cai Y.T., Zheng, Y.H.: Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. — J. Agr. Food Chem. 59: 1264–1268, 2011.CrossRefGoogle Scholar
  53. Shelp, B.J., Bown A.W., Faure D.: Extracellular γ- aminobutyrate mediates communication between plants and other organisms. — Plant Physiol. 142:1350–1352, 2006.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Chiu G., Bajwa, V.S.: Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. I. Pathway structure. — Botany 90: 651–668, 2012.CrossRefGoogle Scholar
  55. Shi, S.Q., Shi, Z., Jiang, Z.P., Qi, L.W., Sun, X.M., Li, C.X., Liu, J.F., Xiao, W.F., Zhang, S.G.: Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. — Plant Cell Environ. 33: 149–162, 2010.CrossRefPubMedGoogle Scholar
  56. Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. — Phytochemistry 28: 1057–1060, 1989.CrossRefGoogle Scholar
  57. Smirnoff, N.: Antioxidant systems and plant response to the environment. — In: Smirnoff, N. (ed.): Environment and Plant Metabolism: Fexibility and Acclimation. Pp. 217–243. Bios Scientific Publishers, Oxford 1995.Google Scholar
  58. Song, H.M., Xu, X.B., Wang, H., Wang, H.Z., Tao, Y.Z.: Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. — J. Sci. Food Agr. 90: 1410–1416, 2010.CrossRefGoogle Scholar
  59. Souza, R.P., Machado, E.C., Silva, J.A.B., Lagoa, A., Silveira, J.A.G.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. — Environ. exp. Bot. 51: 45–56, 2004.CrossRefGoogle Scholar
  60. Su, G.X., Bing, J., Yu, B.J., Zhang, W.H., Liu, Y.L.: Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. — Plant Physiol. Biochem. 45: 560–566, 2007.CrossRefGoogle Scholar
  61. Sulieman, S.: Does GABA increase the efficiency of symbiotic N2 fixation in legumes? — Plant Signal. Behav. 6: 32–36, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  62. Takahashi, H., Matsumura, H., Kawai-Yamada, M., Uchimiya, H.: The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells. — Plant Signal. Behav. 3: 945–953, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Tang, Z.C.: [Modern Experiment Procotols in Plant Physiology.] — Science Press, Beijing 1999. [In Chin.]Google Scholar
  64. Yamaguchi, T., Blumwald, E.: Developing salt-tolerant crop plants: challenges and opportunities. — Trends Plant Sci. 10: 615–620, 2005.CrossRefPubMedGoogle Scholar
  65. Yang, X.H., Liang, Z., Wen, X.G., Lu, C.M.: Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. — Plant mol. Biol. 66: 73–86, 2008.CrossRefPubMedGoogle Scholar
  66. Yang, Y., Yan, C.Q., Cao, B.H., Xu, H.X., Chen, J.P., Jiang, D.A.: Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. — Physiol. Plant. 129: 658–669, 2007.CrossRefGoogle Scholar
  67. Yu, G.H., Sun, M.X.: Deciphering the possible mechanism of GABA in tobacco pollen tube growth and guidance. — Plant Signal. Behav. 2: 393–395, 2007.PubMedCentralCrossRefPubMedGoogle Scholar
  68. Zhu, Z.J., Wei, G.Q., Li, J., Qian, Q.Q., Yu, J.Q.: Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). — Plant Sci. 167: 527–533, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. F. Li
    • 1
  • S. J. Guo
    • 1
  • X. H. Yang
    • 2
  • Q. W. Meng
    • 2
  • X. J. Wei
    • 1
  1. 1.College of Life ScienceLiaocheng UniversityLiaochengP.R. China
  2. 2.College of Life ScienceShandong Agricultural UniversityTaianP.R. China

Personalised recommendations