Biologia Plantarum

, Volume 59, Issue 4, pp 677–685 | Cite as

RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit

  • Y. Kadomura-Ishikawa
  • K. Miyawaki
  • A. Takahashi
  • S. Noji
Original Papers


Strawberry (Fragaria × ananassa) contains anthocyanins which are important secondary metabolites and key contributors to the antioxidant capacity and nutritional value of the fruit. Anthocyanin biosynthetic genes have been identified. However, the detailed mechanism responsible for anthocyanin accumulation and regulation of biosynthetic genes during strawberry fruit ripening remain unclear. In the present study, we examined the effect of a Fragaria × ananassa myeloblastosis 1 homolog, FaMYB1, on anthocyanin accumulation in the strawberry fruit receptacle. Expression analysis shows that FaMYB1 transcripts increased in response to irradiance but not to abscisic acid treatments. Down-regulation of FaMYB1 was achieved in planta using Agrobacterium-mediated RNA interference (RNAi). As a result, FaMYB1-RNAi fruits exhibited a significant increase in anthocyanin content. Conversely, overexpression of FaMYB1 resulted in a decrease in anthocyanin content. Overexpression of FaMYB1 also significantly reduced expression of genes encoding anthocyanidin synthase and flavonoid glycosyltransferase, whereas down-regulation of FaMYB1 resulted in a significant decrease in the amount of transcripts of leucoanthocyanidin reductase. These data suggest that FaMYB1 might negatively control anthocyanin biosynthesis in the strawberry fruit at the branching-point of anthocyanin/proanthocyanidin biosynthesis.

Additional key words

abscisic acid flavonoid pathway MYB transcription factor Fragaria × ananassa 



abscisic acid


anthocyanidin reductase


anthocyanidin synthase


chalcone isomerase


chalcone synthase




flavonoid glycosyltransferase




glyceraldehyde-3-phosphate dehydrogenase


leucoanthocyanidin reductase






transcription factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2015_548_MOESM1_ESM.pdf (118 kb)
Supplementary material, approximately 117 KB.


  1. Aharoni, A., De Vos, C.H., Wein, M., Sun, Z., Greco, R., Kroon, A., Mol, J.N., O’Connell, A.P.: The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. — Plant J. 28: 319–332, 2001.CrossRefPubMedGoogle Scholar
  2. Alexander, L., Grierson, D.: Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. — J. exp. Bot. 53: 2039–2055, 2002.CrossRefPubMedGoogle Scholar
  3. Almeida, J.R., D’Amico, E., Preuss, A., Carbone, F., De Vos, C.H., Deiml, B., Mourgues, F., Perrotta, G., Fischer, T.C., Bovy, A.G., Martens, S., Rosati, C.: Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria × ananassa). — Arch. Biochem. Biophys. 465: 61–71, 2007.CrossRefPubMedGoogle Scholar
  4. Anttonen, M.J., Hoppula, K.I., Nestby, R., Verheul, M.J., Karjalainen, R.O.: Influence of fertilization, mulch, color, early forcing, fruit order, planting date, shading, growing environment, and genotype on the contents of selected phenolics in strawberry (Fragaria × ananassa Duch.) fruits. — J. agr. Food Chem. 54: 2614–2620, 2006.CrossRefGoogle Scholar
  5. Azuma, A., Yakushiji, H., Koshita, Y., Kobayashi, S.: Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. — Planta 236: 1067–1080, 2012.CrossRefPubMedGoogle Scholar
  6. Baudry, A., Heim, M.A., Dubreucq, B., Caboche, M., Weisshaar, B., Lepiniec, L.: TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. — Plant J. 39: 366–380, 2004.CrossRefPubMedGoogle Scholar
  7. Carbone, F., Preuss, A., De Vos, R.C., D’Amico, E., Perrotta, G., Bovy, A.G., Martens, S., Rosati, C.: Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. — Plant Cell Environ. 32: 1117–1131, 2009.CrossRefPubMedGoogle Scholar
  8. Chai, Y.M., Jia, H.F., Li, C.L., Dong, Q.H., Shen, Y.Y.: FaPYR1 is involved in strawberry fruit ripening. — J. exp. Bot. 62: 5079–5089, 2011.CrossRefPubMedGoogle Scholar
  9. Cominelli, E., Gusmaroli, G., Allegra, D., Galbiati, M., Wade, H.K., Jenkins, G.I., Tonelli, C.: Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. — J. Plant Physiol. 165: 886–894, 2008.CrossRefPubMedGoogle Scholar
  10. Debes, M.A., Arias, M.E., Grellet-Bournonville, C.F., Wulff, A.F., Martínez-Zamora, M.G., Castagnaro, A.P., Díaz-Ricci, J.C.: White-fruited Duchesnea indica (Rosaceae) is impaired in ANS gene expression. — Amer. J. Bot. 98: 2077–2083, 2011.CrossRefGoogle Scholar
  11. Dussi, M.C., Sugar, D., Wrolstad, R.E.: Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit color. — Amer. Soc. hort. Sci. 120: 785–789, 1995.Google Scholar
  12. Fait, A., Hanhineva, K., Beleggia, R., Dai, N., Rogachev, I., Nikiforova, V.J., Fernie, A.R., Aharoni, A.: Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. — Plant Physiol. 148: 730–750, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Fischer, T.C., Mirbeth, B., Rentsch, J., Sutter, C., Ring, L., Flachowsky, H., Habegger, R., Hoffmann, T., Hanke, M.V., Schwab, W.: Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (Fragaria × ananassa). — New Phytol. 201: 440–451, 2014.CrossRefPubMedGoogle Scholar
  14. Griesser, M., Hoffmann, T., Bellido, M.L., Rosati, C., Fink, B., Kurtzer, R., Aharoni, A., Muñoz-Blanco, J., Schwab, W.: Redirection of flavonoid biosynthesis through the downregulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. — Plant Physiol. 146: 1528–1539, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Hoffmann, T., Kalinowski, G., Schwab, W.: RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: a rapid assay for gene function analysis. — Plant J. 48: 818–826, 2006.CrossRefPubMedGoogle Scholar
  16. Jia, H.J., Araki, A., Okamoto, G.: Influence of fruit bagging on aroma volatiles and skin coloration of “Hakuho” peach (Prunus persica Batsch). — Postharvest Biol. Technol. 35: 61–68, 2005.CrossRefGoogle Scholar
  17. Jia, H.F., Chai, Y.M., Li, C.L., Lu, D., Luo, J.J., Qin, L., Shen, Y.Y.: Abscisic acid plays an important role in the regulation of strawberry fruit ripening. — Plant Physiol. 157: 188–199, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Jia, H.F., Lu, D., Sun, J.H., Li, C.L., Xing, Y., Qin, L., Shen, Y.Y.: Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. — J. exp. Bot. 64: 1677–1687, 2013.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B., Martin, C.: Transcriptional repression by AtMYB4 controls production of UVprotecting sunscreens in Arabidopsis. — EMBO J. 19: 6150–6161, 2000.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Josuttis, M., Dietrich, H., Treutter, D., Will, F., Linnemannstöns, L., Krüger, E.: Solar UV-B response of bioactives in strawberry (Fragaria × ananassa Duch. L.): a comparison of protected and open-field cultivation. — J. agr. Food Chem. 58: 12692–12702, 2010.CrossRefGoogle Scholar
  21. Kadomura-Ishikawa, Y., Miyawaki, K., Noji, S., Takahashi, A.: Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria × ananassa fruits. — J. Plant Res. 126: 847–857, 2013.CrossRefPubMedGoogle Scholar
  22. Kami, C., Lorrain, S., Hornitschek, P., Fankhauser, C.: Lightregulated plant growth and development. — Curr. Topics dev. Biol. 91: 29–66, 2010.CrossRefGoogle Scholar
  23. Kataoka, I., Beppu, K.: UV irradiance increases development of red skin color and anthocyanins in “Hakuho” peach. — HortScience 39: 1234–1237, 2004.Google Scholar
  24. Kim, S., Jones, R., Yoo, K.S., Pike, L.M.: The L locus, one of complementary genes required for anthocyanin production in onions (Allium cepa), encodes anthocyanidin synthase. — Theor. appl. Genet. 111: 120–127, 2005.CrossRefPubMedGoogle Scholar
  25. Kim, S.H., Lee, J.R., Hong, S.T., Yoo, Y.K., An, G., Kim, S.R.: Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. — Plant Sci. 165: 403–413, 2003.CrossRefGoogle Scholar
  26. Klee, H.J., Giovannoni, J.J.: Genetics and control of tomato fruit ripening and quality attributes. — Annu. Rev. Genet. 45: 41–59, 2011.CrossRefPubMedGoogle Scholar
  27. Koes, R., Verweij, W., Quattrocchio, F.: Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. — Trends Plant Sci. 10: 236–242, 2005.CrossRefPubMedGoogle Scholar
  28. Kortstee, A.J., Khan, S.A., Helderman, C., Trindade, L.M., Wu, Y., Visser, R.G., Brendolise, C., Allan, A., Schouten, H.J., Jacobsen E.: Anthocyanin production as a potential visual selection marker during plant transformation. — Transgenic Res. 20: 1253–1264, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Lin, W.K., Bolitho, K., Grafton, K., Kortstee, A., Karunairetnam, S., McGhie, T.K., Espley, R.V., Hellens, R.P, Allan, A.C.: An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. — BMC Plant Biol. 21: 10–50, 2010.Google Scholar
  30. Miyawaki, K., Fukuoka, S., Kadomura, Y., Hamaoka, H., Mito, T., Ohuchi, H., Schwab, W., Noji, S.: Establishment of a novel system to elucidate the mechanisms underlying lightinduced ripening of strawberry fruit with an Agrobacteriummediated RNAi technique. — Plant Biotechnol. 29: 271–277, 2012.CrossRefGoogle Scholar
  31. Medina-Puche, L., Cumplido-Laso, G., Amil-Ruiz, F., Hoffmann, T., Ring, L., Rodríguez-Franco, A., Caballero, J.L., Schwab, W., Muñoz-Blanco, J., Blanco-Portales, R.: MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. — J. exp. Bot. 65: 401–417, 2014.CrossRefPubMedGoogle Scholar
  32. Osorio, S., Scossa, F., Fernie, A.R.: Molecular regulation of fruit ripening. — Front. Plant Sci. 4: 198, 2013.PubMedCentralPubMedGoogle Scholar
  33. Paolocci, F., Robbins, M.P., Passeri, V., Hauck, B., Morris, P., Rubini, A., Arcioni, S., Damiani, F.: The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. — J. exp. Bot. 62: 1189–1200, 2011.CrossRefPubMedGoogle Scholar
  34. Salvatierra, A., Pimentel, P., Moya-Leon, M.A., Caligari, P.D., Herrera, R.: Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. — Phytochemistry 71: 1839–1847, 2010.CrossRefPubMedGoogle Scholar
  35. Salvatierra, A., Pimentel, P., Moya-León, M.A., Herrera, R.: Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. — Phytochemistry 90: 25–36, 2013.CrossRefPubMedGoogle Scholar
  36. Tamagnone L., Merida A., Parr A., Mackay S., Culianez-Macia F.A., Roberts K., Martin C.: The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. — Plant Cell 10: 135–154, 1998.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Uleberg, E., Rohloff, J., Jaakola, L., Trôst, K., Junttila, O., Häggman, H., Martinussen, I.: Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.). — J. agr. Food Chem. 60: 10406–10414, 2012.CrossRefGoogle Scholar
  38. Vogt, T.: Phenylpropanoid biosynthesis. — Mol. Plant 3: 2–20, 2010.CrossRefPubMedGoogle Scholar
  39. Winkel-Shirley, B.: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. — Plant Physiol. 126: 485–493, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Wei, Y.Z., Hu, F.C., Hu, G.B., Li, X.J., Huang, X.M., Wang, H.C.: Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. — PLoS One 6: e19455, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Zhao, Z.C., Hu, G.B., Hu, F.C., Wang, H.C., Yang, Z.Y., Lai, B.: The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration. — Mol. Biol. Rep. 39: 6409–6415, 2012.CrossRefPubMedGoogle Scholar
  42. Zhou Y., Singh B.R.: Effect of light on anthocyanin levels in submerged, harvested cranberry fruit. — J. Biomed. Biotechnol. 2004: 259–263, 2004.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Y. Kadomura-Ishikawa
    • 1
    • 2
  • K. Miyawaki
    • 2
  • A. Takahashi
    • 1
  • S. Noji
    • 2
  1. 1.Department of Nutrition, Faculty of MedicineUniversity of TokushimaTokushimaJapan
  2. 2.Department of Life System, Institute of Technology and ScienceUniversity of TokushimaTokushimaJapan

Personalised recommendations