Biologia Plantarum

, Volume 59, Issue 2, pp 389–393 | Cite as

Marker-trait associations for survival, growth, and flowering components in Eucalyptus cladocalyx under arid conditions

  • P. Ballesta
  • F. Mora
  • E. Ruiz
  • R. Contreras-Soto
Brief Communication


Understanding the basis of the genetic variations responsible for the complex traits found in Eucalyptus cladocalyx under arid environmental conditions is crucial for designing genetic architecture studies. Forty-five half-sib families from Australia were used to identify inter-simple sequence repeat (ISSR) markers that are associated with growth (height, diameter at breast height, and stem straightness), flowering traits (flowering intensity, flowering precocity, reproductive capacity, and late flowering) and tree survival under arid conditions in southern Atacama Desert, Chile. Each DNA pellet consisted of a pool of five trees from each family. ISSR markers were associated with all the traits studied and accounted for 9.8 to 23.4 % of the phenotypic variation. Several loci were associated with more than one trait. For example, UBC810(450–500 bp), ISO1(600–610 bp), and TGT9(780–800 bp) were associated with three of the traits studied. These identified genomic regions may contribute to the increase of the efficiency of the conventional tree breeding program for E. cladocalyx.

Additional key words

inter-microsatellites marker-assisted selection structured populations sugar gum. 



diameter at breast height


early flowering


flowering intensity


total height


inter simple sequence repeat


late flowering


principal coordinates analysis


reproductive capacity


stem straightness




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2014_459_MOESM1_ESM.pdf (107 kb)
Supplementary material, approximately 106 KB.


  1. Balasaravanan, T., Chezhian, P., Kamalakannan, R., Ghosh, M., Yasodha, R., Varghese, M., Gurumurthi, K.: Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR). — Tree Physiol. 25: 1295–1302, 2005.PubMedCrossRefGoogle Scholar
  2. Barakat, M.N., Wahba, L.E., Milad, S.I.: Molecular mapping of QTLs for wheat flag leaf senescence under water-stress. — Biol. Plant. 57: 79–84, 2013.CrossRefGoogle Scholar
  3. Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. Buckler, E.S.: TASSEL: software for association mapping of complex traits in diverse samples. — Bioinformatics 23: 2633–2635, 2007.PubMedCrossRefGoogle Scholar
  4. Bush, D., McCarthy, K., Meder, R.: Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). — Ann. Forest Sci. 68: 1057–1066, 2011.CrossRefGoogle Scholar
  5. Bush, D., Thumma, B.: Characterising a Eucalyptus cladocalyx breeding population using SNP markers. — Tree Genet. Genomes 9: 741–752, 2013.CrossRefGoogle Scholar
  6. Callister, A., Bush, D.J., Collins, S., Davis, W.: Prospects for genetic improvement of Eucalyptus cladocalyx in Western Australia. — New Zeal. J. Forest. Sci. 38: 211–226, 2008.Google Scholar
  7. Cané-Retamales, C., Mora, F., Vargas-Reeve, F., Contreras-Soto, R.: Bayesian threshold analysis of breeding values, genetic correlation and heritability of flowering intensity in Eucalyptus cladocalyx under arid conditions. — Euphytica 178: 177–183, 2011.CrossRefGoogle Scholar
  8. Cappa, E.P., Pathauer, P.S., López, G.A.: Provenance variation and genetic parameters of Eucalyptus viminalis in Argentina. — Tree Genet. Genomes 6: 981–994, 2010.CrossRefGoogle Scholar
  9. Cardon, L.R., Bell, J.I.: Association study designs for complex diseases. — Nature Rev. Genet. 2: 91–99, 2001.PubMedCrossRefGoogle Scholar
  10. Chezhian, P., Yasodha, R., Gosh, M.: Genetic diversity analysis in a seed orchard of Eucalyptus tereticornis. — New Forests 40: 85–99, 2010.CrossRefGoogle Scholar
  11. Doyle, J.J., Doyle, J.L.: Isolation of DNA from fresh plant tissue. — Focus 12: 13–15, 1987.Google Scholar
  12. Ellis M.F., Sedgley, M.: Floral morphology and breeding system of three species of Eucalyptus, section bisectaria (Myrtaceae). — Aust. J. Bot. 40: 249–262, 1992.CrossRefGoogle Scholar
  13. Evanno, G., Regnaut, S., Goudet, J.: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. — Mol. Ecol. 14: 2611–262, 2005.PubMedCrossRefGoogle Scholar
  14. Excoffier, L., Hofer, T., Foll, F.: Detecting loci under selection in a hierarchically structured population. — Heredity 103: 285–298, 2009.PubMedCrossRefGoogle Scholar
  15. Excoffier, L., Lischer, H.E.L.: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. — Mol. Ecol. Resources 10: 564–567, 2010.CrossRefGoogle Scholar
  16. Freeman, J.S., Whittock, S.P., Potts, B.M., Vaillancourt, R.E.: QTL influencing growth and wood properties in Eucalyptus globulus. — Tree Genet. Genomes 5: 713–722, 2009.CrossRefGoogle Scholar
  17. Gonzalez-Martinez, S.C., Huber, D., Ersoz, E., Davis, J.M., Neale, D.B.: Association genetics in Pinus taeda L. II. Carbon isotope discrimination. — Heredity 101: 19–26, 2008.PubMedCrossRefGoogle Scholar
  18. Kelleher, C.T., Wilkin, J., Zhuang, J., Cortés, A.J., Quintero, A.L.P., Gallagher, T.F., Bohlmann, J., Douglas, C.J., Ellis, B.E., Ritland, K.: SNP discovery, gene diversity, and linkage disequilibrium in wild populations of Populus tremuloides. — Tree Genet. Genomes 8: 821–829, 2012.CrossRefGoogle Scholar
  19. Lohwasser, U., Rehman Arif, M.A., Börner, A.: Discovery of loci determining pre-harvest sprouting and dormancy in wheat and barley applying segregation and association mapping. — Biol. Plant. 57: 663–674, 2013.CrossRefGoogle Scholar
  20. McDonald, M.W., Rawlins, M., Butchet, P.A., Bell, J.C.: Regional divergence and inbreeding in Eucalyptus cladocalyx (Myrtaceae). — Aust. J. Bot. 51: 393–403, 2003.CrossRefGoogle Scholar
  21. Missiaggia, A.A., Piacezzi, A., Grattapaglia, D.: Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. — Tree Genet. Genomes 1: 79–84, 2005.CrossRefGoogle Scholar
  22. Mora, F., Gleadow, R., Perret, S., Scapim, C.A.: Genetic variation for early flowering, survival and growth in sugar gum (Eucalyptus cladocalyx F. Muell) in southern Atacama Desert. — Euphytica 169: 335–344, 2009.CrossRefGoogle Scholar
  23. Mora, F., Serra, N.: Bayesian estimation of genetic parameters for growth, stem straightness, and survival in Eucalyptus globulus on an Andean Foothill site. — Tree Genet. Genomes 10: 711–719, 2014.CrossRefGoogle Scholar
  24. Okun, D.O., Kenya, E.U., Oballa, P.O., Odee, D.W., Muluvi, G.M.: Analysis of genetic diversity in Eucalyptus grandis (Hill ex Maiden) seed sources using inter simple sequence repeats (ISSR) molecular markers. — Afr. J. Biotechnol. 7: 2119–2123, 2008.Google Scholar
  25. Peakall, R., Smouse, P.: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. — Mol. Ecol. Notes 6: 288–295, 2006.CrossRefGoogle Scholar
  26. Pritchard, J.K., Stephens, M., Donnelly, P.: Inference of population structure using multilocus genotype data. — Genet. 155: 945–959, 2000.Google Scholar
  27. Rönnberg-Wästljung, A.C., Glynn, C., Weih, M.: QTL analyses of drought tolerance and growth for Salix dasyclados × Salix viminalis hybrid in contrasting water regimes. — Theor. appl. Genet. 110: 537–549, 2005.PubMedCrossRefGoogle Scholar
  28. Thamarus, K.A., Groom, K., Bradley, A., Raymond, C.A., Schimleck, L.R., Williams, E.R., Moran, G.F.: Identification of quantitative trait loci for wood and fibre properties in two full-sib pedigrees of Eucalyptus globulus. — Theor. appl. Genet. 109: 856–864, 2004.PubMedCrossRefGoogle Scholar
  29. Thumma, B.R., Baltunis, B.S., Bell, J.C., Emebiri, L.C., Moran, G.F., Southerton, S.G.: Quantitative trait locus (QTL) analysis of growth and vegetative propagation traits in Eucalyptus nitens full-sib families. — Tree Genet. Genomes 6: 877–889, 2010.CrossRefGoogle Scholar
  30. Thumma, B.R., Nolan, M.F., Evans, R., Moran, G.: Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. — Genetics 171: 1257–1265, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Tschaplinski, T.J., Tuskan, G.A., Sewell, M.M., Gebre, G.M., Todd, D.E., Pendley, C.D.: Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments. — Tree physiol. 26: 595–604, 2006.PubMedCrossRefGoogle Scholar
  32. Vargas-Reeve, F., Mora, F., Perret, S., Scapim, C.A.: Heritability of stem straightness and genetic correlations in Eucalyptus cladocalyx in the semi-arid region of Chile. — Crop Breed. appl. Biotechnol. 13: 107–112, 2013.CrossRefGoogle Scholar
  33. Yu, J.M., Pressoir. G., Briggs, W.H., Bi, I.V., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., Kresovich, S., Buckler, E.S.: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. — Nature Genet. 38: 203–208, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • P. Ballesta
    • 1
  • F. Mora
    • 2
  • E. Ruiz
    • 3
  • R. Contreras-Soto
    • 1
    • 4
  1. 1.Faculty of Forest SciencesUniversity of ConcepciónConcepciónChile
  2. 2.Institute of Biological SciencesUniversity of TalcaTalcaChile
  3. 3.Department of BotanyUniversity of ConcepciónCasillaConcepción, Chile
  4. 4.Department of AgronomyState University of MaringáMaringá, ParanáBrazil

Personalised recommendations