Biologia Plantarum

, Volume 58, Issue 4, pp 768–772 | Cite as

Cell membrane integrity, callose accumulation, and root growth in aluminum-stressed sorghum seedlings

  • E. J. Too
  • A. S. Carlsson
  • A. O. Onkware
  • B. A. Were
  • M. Geleta
  • T. Bryngelsson
  • S. Gudu
Brief Communication


Aluminum stress usually reduces plant root growth due to the accumulation of Al in specific zones of the root apex. The objectives of this study were to determine the localization of Al in the root apex of Sorghum bicolor (L.) Moech. and its effects on membrane integrity, callose accumulation, and root growth in selected cultivars. Seedlings were grown in a nutrient solution containing 0, 27, or 39 μM Al3+ for 24, 48, and 120 h. The Al stress significantly reduced root growth, especially after 48 and 120 h of exposure. A higher Al accumulation, determined by fluorescence microscopy after staining with a Morin dye, occurred in the root extension zone of the sensitive cultivar than in the tolerant cultivar. The membrane damage and callose accumulation were also higher in the sensitive than resistant cultivar. It was concluded that the Al stress significantly reduced root growth through the accumulation of Al in the root extension zone, callose accumulation, and impairment of plasma membrane integrity.

Additional key words

aluminum tolerance root extension zone 



Eastern African Regional Programme and Research Network for Biotechnology, Biosafety and Biotechnology Policy Development


International Crops Research Institute for the Semi-Arid Tropics


Swedish International Development Agency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, S.J., Matsumoto, H.: The role of the plasma membrane in the response of plant roots to aluminum toxicity. — Plant Signal. Behav. 1: 37–45, 2006.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alvim, M.N., Ramos, F.T., Oliveira, D.C., Isaias, R.M.S., Franca, M.G.C.: Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings. — J. Biosci. 37: 1079–1088, 2012.PubMedCrossRefGoogle Scholar
  3. Baker, J.C., Mock, N.M.: An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. — Plant Cell Tissue Organ Cult. 39: 7–12, 1994.CrossRefGoogle Scholar
  4. Bhuja, P., McLachlan, K., Stephens, J., Taylor, G.: Accumulation of 1,3-beta-D-glucans, in response to aluminum and cytosolic calcium in Triticum aestivum. — Plant Cell Physiol. 45: 543–549, 2004.PubMedCrossRefGoogle Scholar
  5. Cartes, P., McManus, M., Wulff-Zottele, C., Leung, S., Gutiérrez-Moraga, A., Mora, M.D.L.: Differential superoxide dismutase expression in ryegrass cultivars in response to short term aluminium stress. — Plant Soil 350: 353–363, 2012.CrossRefGoogle Scholar
  6. Cheprot, R.K., Matonyei, T.K., Maritim, K.K., Were, B.A., Dangasuk, O.G., Onkware, A.O. Gudu, S.: Physiological characterization of Kenyan sorghum lines for tolerance to aluminium. — Int. J. nat. Sci. Res. 2: 59–71, 2014.CrossRefGoogle Scholar
  7. Garzón, T., Gunsé, B., Moreno, A.R., Tomos, A.D., Barceló, J., Poschenrieder, C.: Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. — Plant Sci. 180: 709–715, 2011.PubMedCrossRefGoogle Scholar
  8. Goncalves, J.F.D., Cambraia, J., Mosquim, P.R., Araujo, E.F.: Aluminum effect on organic acid production and accumulation in sorghum. — J. Plant Nutr. 28: 507–520, 2005.CrossRefGoogle Scholar
  9. Gunse, B., Poschenrieder, C., Barcelo, J.: Water transport properties of roots and root cortical cells in proton- and Alstressed maize varieties. — Plant Physiol. 113: 595–602, 1997.PubMedPubMedCentralGoogle Scholar
  10. Illéš, P., Schlicht, M., Pavlovkin, J., Lichtscheidl, I., Baluška, F., Ovečka, M.: Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. — J. exp. Bot. 57: 4201–4213, 2006.PubMedCrossRefGoogle Scholar
  11. Kaneko, M., Yoshimura, E., Nishizawa, N.K., Mori, S.: Time course study of aluminum-induced callose formation in barley roots as observed by digital microscopy and low-vacuum scanning electron microscopy. — Soil Sci. Plant Nutr. 45: 701–712, 1999.CrossRefGoogle Scholar
  12. Kochian, L., Piñeros, M., Hoekenga, O.: The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. — Plant Soil 274: 175–195, 2005.CrossRefGoogle Scholar
  13. Koehle, H., Jeblick, W., Poten, F., Blaschek, W., Kauss, H.: Chitosan-elicited callose synthesis in soybean (Glycine max) cultivar Harosoy-63 cells as a calcium-dependent process. — Plant Physiol. 77: 544–551, 1985.CrossRefGoogle Scholar
  14. Magalhaes, J.V., Garvin, D.F., Wang, Y., Sorrells, M.E., Klein, P.E., Schaffert, R.E., Li, L., Kochian, L.V.: Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. — Genetics 167: 1905–1914, 2004.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Magalhaes, J.V., Liu, J., Guimaraes, C.T., Lana, U.G., Alves, V.M., Wang, Y.H., Schaffert, R.E., Hoekenga, O.A., Pineros, M.A., Shaff, J.E., Klein, P.E., Carneiro, N.P., Coelho, C.M., Trick, H.N., Kochian, L.V.: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. — Nat. Genet. 39: 1156–1161, 2007.PubMedCrossRefGoogle Scholar
  16. Martins, N., Goncales, S., Romano, A.: Metabolism and aluminium accumulation in Plantago almogravensis and P. Algarbiensis in response to low pH and aluminium stress. — Biol. Plant. 57: 325–331, 2013.CrossRefGoogle Scholar
  17. Massot, N., Llugany, M., Poschenrieder, C., Barcelo, J.: Callose production as indicator of aluminum toxicity in bean cultivars. — J. Plant Nutr. 22: 1–10, 1999.CrossRefGoogle Scholar
  18. Narro, L.A., Arcos, A.L.: Genetics of aluminum-induced callose formation in maize roots, a selection trait for aluminum resistance. — Crop Sci. 50: 1848–1853, 2010.CrossRefGoogle Scholar
  19. Panda, S.K., Matsumoto, H.: Molecular physiology of aluminium toxicity and tolerance in plants. — Bot. Rev. 74: 326–347, 2007.CrossRefGoogle Scholar
  20. Peixoto, P.H.P., Cambraia, J., Sant’Anna, R., Mosquim, P.R., Moreira, M.A.: Aluminum effects on fatty acid composition and lipid peroxidation of a purified plasma membrane fraction of root apices of two sorghum cultivars. — J. Plant Nutr. 24: 1061–1070, 2001.CrossRefGoogle Scholar
  21. Pirselova, B., Matusikova, I.: Callose: the plant cell wall polysaccharide with multiple biological functions. — Acta Physiol. Plant. 35: 635–644, 2013.CrossRefGoogle Scholar
  22. Ringo, J.H., Mneney, E.E., Onkware, A.O., Were, B.A., Too, E.J., Owuoche, J.O., Gudu, S.O.: Tolerance to aluminium toxicity in Tanzanian sorghum genotypes. — Afr. Crop Sci. J. 18: 155–164, 2010.Google Scholar
  23. Silva, S., Rodriguez, E., Pinto-Carnide, O., Martins-Lopes, P., Matos, M., Guedes-Pinto, H., Santos, C.: Zonal responses of sensitive vs. tolerant wheat roots during Al exposure and recovery. — J. Plant Physiol. 169: 760–769, 2012.PubMedCrossRefGoogle Scholar
  24. Sivaguru, M., Horst, W.J.: The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. — Plant Physiol. 116: 155–163, 1998.CrossRefPubMedCentralGoogle Scholar
  25. Sivaguru, M., Fujiwara, T., Samaj J., Baluska, F., Yang, Z., Osawa, H., Maeda, T., Mori, T., Volkmann, D., Matsumoto, H.: Aluminium-induced 1-3-β-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. — Plant Physiol. 124: 991–1005, 2000.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Smith, E., Naik, D., Cumming, J.R.: Genotypic variation in aluminum resistance, cellular aluminum fractions, callose and pectin formation and organic acid accumulation in roots of Populus hybrids. — Environ. exp. Bot. 72: 182–193, 2011.CrossRefGoogle Scholar
  27. Tamás, L., Budíková, S., Šimonovičová, M., Huttová, J., Široká, B., Mistrík, I.: Rapid and simple method for Al-toxicity analysis in emerging barley roots during germination. — Biol. Plant. 50: 87–93, 2006.CrossRefGoogle Scholar
  28. Too, E.J.: Physiological and Molecular Characterization of Resistance to Aluminium Stress in Selected Grain Sorghums. — Thesis. Biological Sciences, Moi University, Eldoret 2011.Google Scholar
  29. Von Uexküll, H.R., Mutert, E.: Global extent, development and economic impact of acid soils. — Plant Soil 171: 1–15, 1995.CrossRefGoogle Scholar
  30. Xu, F.J., Li, G., Jin, C.W., Liu, W.J., Zhang, S.S., Zhang, Y.S., Lin, X.Y.: Aluminum-induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidant capacity in wheat root tips. — Biol. Plant. 56: 89–96, 2012.CrossRefGoogle Scholar
  31. Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S., Matsumoto, H.: Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. — Plant Physiol. 128: 63–72, 2002.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Yang, Z., Eticha, D., Albacete, A., Rao, I.M., Roitsch, T., Horst, W.J.: Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). — J. exp. Bot. 63: 3109–3125, 2012.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • E. J. Too
    • 1
  • A. S. Carlsson
    • 2
  • A. O. Onkware
    • 1
  • B. A. Were
    • 1
  • M. Geleta
    • 2
  • T. Bryngelsson
    • 2
  • S. Gudu
    • 3
  1. 1.Department of Biological SciencesUniversity of EldoretEldoretKenya
  2. 2.Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
  3. 3.Rongo University CollegeConstituent College of Moi UniversityRongoKenya

Personalised recommendations