Advertisement

Biologia Plantarum

, Volume 58, Issue 4, pp 649–658 | Cite as

Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice

  • Z. -Z. Song
  • S. -Y. Yang
  • J. Zuo
  • Y. -H. SuEmail author
Original Papers

Abstract

ApKUPs are typical high-affinity potassium (K+) transporters of Alternanthera philoxeroides which are involved in its response to K+ starvation and abiotic stresses. In this study, the overexpression of ApKUP3 gene in rice resulted in enhanced K+ nutrition and drought tolerance of transgenic plants. Compared with wild-type (WT) plants, the transgenic plants showed a better growth performance and a strengthened K+ accumulation under different K+ supplies. The ApKUP3 overexpression in the rice plants also enhanced tolerance to a drought stress, as evidenced by a reduced leaf water loss and an increased total leaf chlorophyll content, stomatal conductance, net photosynthetic rate, and activities of superoxide dismutase, peroxidase, and ascorbate peroxidase (APX). Moreover, the transcription of genes involved in the antioxidation defense system were higher in the transgenic plants than in the WT plants upon the drought stress.

Additional key words

Alternanthera philoxeroides antioxidant enzymes chlorophyll K+ transporter Oryza sativa photosynthesis stomatal conductance transgenic plant 

Abbreviations

APX

ascorbate peroxidase

CAT

catalase

gs

stomatal conductance

KT/HAK/KUP

K+ transporter/high-affinity K+ transporter/K+ uptake permease

PN

net photosynthetic rate

POD

peroxidase

RT-qPCR

real time quantitative polymerase chain reaction

SOD

superoxide dismutase

WT

wild type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alemán, F., Nieves-Cordones, M., Martínez, V., Rubio, F.: Root K(+) acquisition in plants: the Arabidopsis thaliana model. — Plant Cell Physiol. 52: 1603–1612, 2011.PubMedCrossRefGoogle Scholar
  2. Alwine, J.C., Kemp, D.J., Stark, G.R.: Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. — Proc. nat. Acad. Sci. USA 74: 5350–5354, 1977.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bartels, D., Sunkar, R.: Drought and salt tolerance in plants. — Crit. Rev. Plant Sci. 24: 23–58, 2005.CrossRefGoogle Scholar
  4. Beyer, W.F., Fridovich, I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. — Anal. Biochem. 161: 559–566., 1987.PubMedCrossRefGoogle Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  6. Benlloch-González, M., Arquero, O., Fournier, J.M., Barranco, D., Benlloch, M.: K+ starvation inhibits water-stressinduced stomatal closure. — Plant Physiol. 165: 623–630, 2008.CrossRefGoogle Scholar
  7. Coskun, D., Britto, D.T., Li, M., Oh, S., Kronzucker, H.J.: Capacity and plasticity of potassium channels and highaffinity transporters in roots of barley and Arabidopsis. — Plant Physiol. 162: 496–511, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Foyer, C.H., Noctor, G.: Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. — Plant Cell Environ. 28: 1056–1071, 2005.CrossRefGoogle Scholar
  9. Fu, H.H., Luan, S.: AtKuP1: a dual-affinity K+ transporter from Arabidopsis. — Plant Cell 10:63–73, 1998.PubMedPubMedCentralGoogle Scholar
  10. Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferrière, N., Thibaud, J.B., Sentenac, H.: Identification and disruption of a plant shakerlike outward channel involved in K+ release into the xylem sap. — Cell 94: 647–655, 1998.PubMedCrossRefGoogle Scholar
  11. Gierth, M., Mäser, P.: Potassium transporters in plants — involvement in K+ acquisition, redistribution and homeostasis. — FEBS Lett. 581: 2348–2356, 2007.PubMedCrossRefGoogle Scholar
  12. Gierth, M., Mäser, P., Schroeder, J.I.: The potassium transporter AtHAK5 functions in K+ deprivation-induced high affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. — Plant Physiol. 137: 1105–1114, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Hiei, Y., Ohta, S., Komari, T., Kumashiro, T.: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA. — Plant J. 6: 271–282, 1994.PubMedCrossRefGoogle Scholar
  14. Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z.: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. — Plant Physiol. 130: 639–648, 2002.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., Xiong, L.: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. — Proc. nat. Acad. Sci. USA 103: 12987–12992, 2006.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Huang, X.S., Wang, W., Zhang, Q., Liu, J.H.: A basic helixloop- helix transcription factor PtrbHLH of Poncirus trifoliata confers cold tolerance and modulates POD-mediated scavenging of H2O2. — Plant Physiol. 162: 1178–1194, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Jagtap, V., Bhargava, S.: Variation in the antioxidant metabolism of drought tolerant and drought susceptible varieties of Sorghum bicolor (L.) Moench. exposed to high light, low water and high temperature stress. — J. Plant Physiol. 145: 195–197, 1995.CrossRefGoogle Scholar
  18. Kumar, N., Kumar, S., Vats, S.K., Ahuja, P.S.: Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat. — Photosynth. Res. 88: 63-71, 2006.Google Scholar
  19. Lebaudy, A., Véry, A.A., Sentenac, H.: K+ channel activity in plants: genes, regulations and functions. — FEBS Lett. 581: 2357–2366, 2007.PubMedCrossRefGoogle Scholar
  20. Li, M., Li, Y., Li, H., Wu, G.: Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. — Tree Physiol. 31: 349–357, 2011.PubMedCrossRefGoogle Scholar
  21. Maathuis, F.J.M., Amtmann, N.: K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. — Ann. Bot. 84: 123–133, 1999.CrossRefGoogle Scholar
  22. Mian, A., Oomen, R.J., Isayenkov, S., Sentenac, H., Maathuis, F.J., Véry, A.A.: Over-expression of an Na+-and K+- permeable HKT transporter in barley improves salt tolerance. — Plant J. 68: 468–479, 2011.PubMedCrossRefGoogle Scholar
  23. Mishra, M.K., Chaturvedi, P., Singh, R., Singh, G., Sharma, L.K., Pandey, V., Kumari, N., Misra, P.: Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants. — PLoS One 8: e63064, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Nakano, Y. Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  25. Nelson, D.E., Repetti, P.P., Adams, T.R., Creelman, R.A., Wu, J., Warner, D.C., Anstrom, D.C., Bensen, R.J., Castiglioni, P.P., Donnarummo, M.G., Hinchey, B.S., Kumimoto, R.W., Maszle, D.R., Canales, R.D., Krolikowski, K.A., Dotson, S.B., Gutterson, N., Ratcliffe, O.J., Heard, J.E.: Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. — Proc. nat. Acad. Sci. USA 104: 16450–16455, 2007.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Nounjan, N., Nghia, P.T., Theerakulpisut, P.: Exogenous proline and trehalose promote recovery of rice seedlings from saltstress and differentially modulate antioxidant enzymes and expression of related genes. — J. Plant Physiol. 169: 596–604, 2012.PubMedCrossRefGoogle Scholar
  27. Ni, Z.Y., Hu, Z., Jiang, Q.Y., Zhang, H.: GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. — Plant mol Biol 82: 113–129, 2013.PubMedCrossRefGoogle Scholar
  28. Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim, Y.K., Nahm, B.H., Kim, J.K.: Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. — Plant Physiol. 138: 341–351, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ort, D.R., Oxborough, K., Wise, R.R.: Depressions of photosynthesis in crops with water deficits. — In: Baker, N.R., Bowyer, J.R. (ed): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 315–329. BIOS Scientific Publ., Oxford 1994.Google Scholar
  30. Ozturk, Z.N., Talame, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N., Tuberosa, R., Bohnert, H.J.: Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. — Plant mol. Biol. 48: 551–573, 2002.CrossRefGoogle Scholar
  31. Pal, A.K., Acharya, K., Vats, S.K., Kumar, S., Ahuja, P.S.: Over-expression of PaSOD in transgenic potato enhances photosynthetic performance under drought. — Biol. Plant. 57: 359–364, 2013.CrossRefGoogle Scholar
  32. Rai, R.K., Singh, P., Shrivastava, A.K., Suman, A.: Modulation of low-temperature-induced biochemical changes in bud and root band zones of sugar cane sets by potassium, zinc, and ethrel for improving sprouting. — J. Agr. Food Chem. 56: 11976–11982, 2008.CrossRefGoogle Scholar
  33. Ramalho, J.C., Fortunato, A.S., Goulao, L.F., Lidon, F.C.: Coldinduced changes in mineral content in leaves of Coffea spp. Identification of descriptors for tolerance assessment. — Biol. Plant. 57: 495–506, 2013.CrossRefGoogle Scholar
  34. Rigas, S., Debrosses, G., Haralampidis, K., Vicente-Agullo, F., Feldmann, K., Grabov, A., Dolan, L., Hatzopoulos, P.: Trh1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. — Plant Cell 13: 139–151, 2001.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Santa-Maria, G.E., Rubio, F., Dubcovsky, J., Rodriguez-Navarro, A.: The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. — Plant Cell 9: 2281–2289, 1997.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Sellin, A., Niglas, A., Õunapuu, E., Karusion, A.: Impact of phloem girdling on leaf gas exchange and hydraulic conductance in hybrid aspen. — Biol. Plant. 57: 531–539, 2013.CrossRefGoogle Scholar
  37. Song, Z.Z., Su, Y.H.: Distinctive potassium-accumulation capability of alligator weed (Alternanthera philoxeroides) links to high-affinity potassium transport facilitated by K+-uptake systems. — Weed Sci. 61: 77–84, 2013.CrossRefGoogle Scholar
  38. Tiwari, H.S., Agarwal, R.M., Bhatt, R.K.: Photosynthesis, stomatal resistance and related characteristics as influenced by potassium under normal water supply and water stress conditions in rice (Oryza sativaL.) — Indian J. Plant Physiol. 3: 314–316, 1998.Google Scholar
  39. Turkan, I., Bor, M., Ozdemir, F., Koca, H.: Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and droughtsensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. — Plant Sci. 168: 223–231, 2005.CrossRefGoogle Scholar
  40. Upadhyay, A., Upadhyay, A.K., Bhirangi, R.A.: Expression of Na+/H+ antiporter gene in response to water and salinity stress in grapevine rootstocks. — Biol. Plant. 56: 762–766, 2012.CrossRefGoogle Scholar
  41. Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P., Kwak, S.S.: Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. — Plant Physiol. Biochem. 47: 570–577, 2009.PubMedCrossRefGoogle Scholar
  42. Ward, J.M., Mäser, P., Schroeder, J.I.: Plant ion channels: gene families, physiology, and functional genomics analyses. — Annu. Rev. Plant Physiol. Plant mol. Biol. 71: 59–82, 2009.Google Scholar
  43. Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inze, D., Van Camp, W.: Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. — EMBO J. 16: 4806–4816, 1997.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Wu, X.L., Shiroto, Y., Kishitani, S., Ito, Y., Toriyama, K.: Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. — Plant Cell Rep. 28: 21–30, 2009.PubMedCrossRefGoogle Scholar
  45. Zhang, J., Kirkham, M.B.: Antioxidant responses to drought in sunflower and sorghum seedlings. — New Phytol. 132: 361–373, 1996.CrossRefGoogle Scholar
  46. Zhao, L., Liu, F.X., Xu, W.Y., Di, C., Zhou, S.X., Xue, Y.B., Yu, J.J., Su, Z.: Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. — Plant Biotechnol. J. 7: 550–561, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Z. -Z. Song
    • 1
    • 2
  • S. -Y. Yang
    • 2
    • 3
  • J. Zuo
    • 3
    • 4
  • Y. -H. Su
    • 2
    Email author
  1. 1.Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingP.R. China
  2. 2.State Key Laboratory of Soil and Sustainable AgricultureChinese Academy of SciencesNanjingP.R. China
  3. 3.University of the Chinese Academy of SciencesBeijingP.R. China
  4. 4.Key Laboratory of Plant Resources Conservation and Sustainable UtilizationChinese Academy of SciencesGuangzhouP.R. China

Personalised recommendations