Biologia Plantarum

, Volume 58, Issue 4, pp 758–767 | Cite as

Expression of genes related to flavonoid and stilbene synthesis as affected by signaling chemicals and Botrytis cinerea in grapevines

  • S. Y. Ahn
  • S. A. Kim
  • K. S. Cho
  • H. K. Yun
Original Papers


Recent studies have shown that the expression of genes related to the synthesis of flavonoids, such as the phenylalanineammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and stilbene synthase (STS) genes were induced in response to different signaling molecules and Botrytis cinerea inoculation in grapevine leaves. Therefore, in the present study, the nucleotide and deduced amino acid sequences of STS genes from cultivars Campbell Early and Kyoho were compared. The deduced amino acid sequences of VlKSTS12, VlKSTS11, VICESTS13, and VlKSTS1 showed 100 % homology to VlCESTS12, VlCESTS11, VICESTS24, and VlKSTS13, respectively, in Campbell Early and Kyoho. In addition, the maximum transcription was observed 6 h after chemical treatments. In Campbell Early, the transcription of PAL, CHS, and CHI was higher in leaves treated with ethephon than in those treated with hydrogen peroxide, methyl jasmonate, and salicylic acid. The PAL, CHS, and CHI genes were more induced in Campbell Early than in Kyoho. The mRNA content of STS genes started to increase at 6 h and peaked at 48 h after the treatments. In Kyoho leaves, the expression of STSs was highly up-regulated at 1 h and peaked at 6 h after the treatments. The expression of the STS genes was induced in both the cultivars in leaves inoculated with B. cinerea. STS11 and STS12 showed differential expression patterns from STS1, STS24, and STS13 in Campbell Early leaves inoculated with B. cinerea.

Additional key words

amino acid sequence differentially expressed gene multigene family resveratrol content 



chalcone isomerase


chalcone synthase




flavonol synthase


γ-aminobutyric acid


methyl jasmonate


phenylalanineammonia lyase




salicylic acid


stilbene synthase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, M., Daire, X., Jeandet, P., Breuil, A.C., Weston, L.A., Bessis, R., Boudon, E.: Comparisons of stilbene synthase activity (resveratrol amounts and stilbene synthase mRNAs levels) in grapevines treated with biotic and abiotic phytoalexin inducers. — Amer. J. Enol. Viticult. 48: 394–395, 1997a.Google Scholar
  2. Adrian, M., Jeandet, P., Douillet-Breuil, A.C., Tesson, L., Bessis, R.: Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. — J. Agr. Food Chem. 48: 6103–6105, 2000.CrossRefGoogle Scholar
  3. Adrian, M., Jeandet, P., Veneau, J., Weston, L.A., Bessis, R.: Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. — J. chem. Ecol. 23: 1689–1702, 1997b.CrossRefGoogle Scholar
  4. Ahn, S.Y., Kim, S.A., Han, J.H., Choi, S.J., Yun, H.K.: Induction of defense-related responses and suppression of grey mold in grapevines treated with defense response signaling molecules. — J. amer. pomol. Soc. 67: 104–116, 2013.Google Scholar
  5. Bavaresco, L., Fregoni, C., Cantu, E., Trevisan, M.: Stilbene compounds: from the grapevine to wine. — Drugs exp. clin. Res. 25: 57–63, 1999.PubMedGoogle Scholar
  6. Bavaresco, L., Petegolli, D., Cantu, E., Fregoni, M., Chiusa, G., Trevisan, M.: Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. — Vitis 36: 77–83, 1997.Google Scholar
  7. Belhadj, A., Saigne, C., Telef, N., Cluzet, S., Bouscaut, J., Corio-Costet, M.F., Merillon, J.M.: Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. — J. Agr. Food Chem. 54: 9119–9125, 2006.CrossRefGoogle Scholar
  8. Belhadj, A., Telef, N., Cluzet, S., Bouscaut, J., Corio-Costet, M.F., Merillon, J.M.: Ethephon elicits protection against Erysiphe necator in grapevine. — J. Agr. Food Chem. 56: 5781–5787, 2008a.CrossRefGoogle Scholar
  9. Belhadj, A., Telef, N., Saigne, C., Cluzet, S., Barrieu, F., Hamdi, S., Merillon, J.M.: Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. — Plant Physiol. Biochem. 46: 493–499, 2008b.PubMedCrossRefGoogle Scholar
  10. Bézier, A., Lambert, B., Baillieul, F.: Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. — Eur. J. Plant Pathol. 108: 111–120, 2002.CrossRefGoogle Scholar
  11. Borie, B., Jeandet, P., Parize, A., Bessis, R., Adrian, M.: Resveratrol and stilbene synthase mRNA production in grapevine leaves treated with biotic and abiotic phytoalexin elicitors. — Amer. J. Enol. Viticult. 55: 60–64, 2004.Google Scholar
  12. Chang, S., Puryear, J., Cairney, J.: A simple and efficient method for isolating RNA from pine trees. — Plant mol. Biol. 11: 113–116, 1993.CrossRefGoogle Scholar
  13. Chen S.M., Li, C.-H., Zhu, X.-R., Deng, Y.-M., Sun, W., Wang, L.-S., Chen, F.-D., Zhang, Z.: The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. — Biol. Plant. 56: 458–464, 2012.CrossRefGoogle Scholar
  14. Chong, J., Poutaraud, A., Hugueney, P.: Metabolism and roles of stilbenes in plants. — Plant Sci. 177: 143–155, 2009.CrossRefGoogle Scholar
  15. Christie, P.J., Alfenito, M.R., Walbot, V.: Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. — Planta 194: 541–549, 1994.CrossRefGoogle Scholar
  16. Cvikrová, M, Malá, J., Hrubcová, M., Eder, J., Foretová, S.: Induced changes in phenolic acids and stilbenes in embryogenic cell cultures of Norway spruce by culture filtrate of Ascocalyx abietina. — J. Plant Dis. Prot. 115: 57–62, 2007.Google Scholar
  17. Dercks, W. Creasy, L.L.: The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. — Physiol. mol. Plant Pathol. 34: 189–202, 1989.CrossRefGoogle Scholar
  18. Dixon, R.A. Paiva, N.L.: Stress-induced phenylpropanoid metabolism. — Plant Cell 7: 1085–1097, 1995.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fritzmeier, K.H., Kindl, H.: Coordinate induction by UV light of stilbene synthase, phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in leaves of Vitaceae. — Planta 151: 48–52, 1981.CrossRefGoogle Scholar
  20. Fung, R.W., Gonzalo, M., Fekete, C., Kovacs, L.G., He, Y., Marsh, E., McIntyre, L.M., Schachtman, D.P., Qiu, W.: Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. — Plant Physiol. 146: 236–249, 2008.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hahlbrock, K., Grisebach, H.: Enzymic controls in the biosynthesis of lignin and flavonoids. — Annu. Rev. Plant Physiol. 30: 105–130, 1979.CrossRefGoogle Scholar
  22. Hahlbrock, K., Scheel, D.: Physiology and molecular biology of phenylpropanoid metabolism. — Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 347–369, 1989.CrossRefGoogle Scholar
  23. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyere, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Fabbro, C.D., Alaux, M., Gaspero, G.D., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Clainche, I.L., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pe, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quetier, F., Wincker, P.: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. — Nature 449: 463–467, 2007.PubMedCrossRefGoogle Scholar
  24. Kiselev, K.V., Dubrovina, A.S., Bulgakov, V.P.: Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. — Appl. Microbiol. Biotechnol. 82: 647–655, 2009.PubMedCrossRefGoogle Scholar
  25. Langcake, P.: Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, ɛ-viniferin, α-viniferin and pterostilbene. — Physiol. Plant Pathol. 18: 213–226, 1981.CrossRefGoogle Scholar
  26. Langcake, P., Pryce, R.J.: A new class of phytoalexins from grapevines. — Experientia 33: 151–152, 1977.PubMedCrossRefGoogle Scholar
  27. Liswidowati, Melchior, F., Hohmann, F., Schwer, B., Kindl, H.: Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. — Planta 183: 307–314, 1991.PubMedCrossRefGoogle Scholar
  28. Melchior, F., Kindl, H.: Coordinated and elicitor-dependent expression of stilbene synthase and phenylalanine ammonia-lyase genes in Vitis cv. Optima. — Arch. Biochem. Biophys. 288: 552–557, 1991.PubMedCrossRefGoogle Scholar
  29. Nishihara, M., Nakatsuka, T., Yamamura, S.: Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. — FEBS Lett. 579: 6074–6078, 2005.PubMedCrossRefGoogle Scholar
  30. Repka, V.: Elicitor-stimulated induction of defense mechanisms and defense gene activation in grapevine cell suspension cultures. — Biol. Plant. 44: 555–565, 2001.CrossRefGoogle Scholar
  31. Richter, H., Pezet, R., Viret, O., Gindro, K.: Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. — Physiol. Mol. Plant Pathol. 67: 248–260, 2006.CrossRefGoogle Scholar
  32. Riedel, H., Akumo, D.N., Thaw Saw, N.M., Kütük, O., Neubauer, P., Smetanska, I.: Elicitation and precursor feeding influence phenolic acids composition in Vitis vinifera suspension culture. — Afr. J. Biotechnol. 11: 3000–3008, 2012.Google Scholar
  33. Schröder, G., Brown, J.W.S., Schröder, J.: Molecular analysis of resveratrol synthase cDNA, genomic clones and relationship with chalcone synthase. — Eur. J. Biochem. 172: 161–169, 1988.PubMedCrossRefGoogle Scholar
  34. Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G., Tonelli, C.: Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). — Plant mol. Biol. 24: 743–755, 1994.PubMedCrossRefGoogle Scholar
  35. Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., Fitzgerald, L.M., Vezzulli, S., Reid, J., Malacarne, G., Iliev, D., Coppola, G., Wardell, B., Micheletti, D., Macalma, T., Facci, M., Mitchell, J.T., Perazzolli, M., Eldredge, G., Gatto, P., Oyzerski, R., Moretto, M., Gutin, N., Stefanini, M., Chen, Y., Segala, C., Davenport, C., Dematte, L., Mraz, A., Battilana, J., Stormo, K., Costa, F., Tao, Q., Si-Ammour, A., Harkins, T., Lackey, A., Perbost, C., Taillon, B., Stella, A., Solovyev, V., Fawcett, J.A., Sterck, L., Vandepoele, K., Grando, S.M., Toppo, S., Moser, C., Lanchbury, J., Bogden, R., Skolnick, M., Sgaramella, V., Bhatnagar, S.K., Fontana, P., Gutin, A., Van de Peer, Y., Salamini, F., Viola, R.: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. — PLoS ONE 12: e1326, 2007.CrossRefGoogle Scholar
  36. Wang, W., Tang, K., Yang, H.-R., Wen, P-F., Zhang, P., Wang, H.-L., Huang, W.-D.: Distribution of resveratrol and stilbene synthase in young grape plant (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. — Plant Physiol. Biochem. 48: 142–152, 2010.PubMedCrossRefGoogle Scholar
  37. Wang, W., Wang, H.-L., Wan, S.-B., Zhang, J.-H., Zhang, P., Zhan, J.-C., Huang, W.-D.: Chalcone isomerase in grape vine: gene expression and localization in the developing fruit. — Biol. Plant. 56: 545–550, 2012.CrossRefGoogle Scholar
  38. Wiese, W., Vornam, B., Krause, E., Kindl, H.: Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. — Plant mol. Biol. 26: 667–677, 1994.PubMedCrossRefGoogle Scholar
  39. Zhang, Q., Su, L.-J., Chen, J.-W., Zeng, X.-Q., Sun, B.-Y., Peng, C.-L.: The antioxidative role of anthocyanins in Arabidopsis under high-irradiance. — Biol. Plant. 56: 97–104, 2012.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. Y. Ahn
    • 1
  • S. A. Kim
    • 1
  • K. S. Cho
    • 2
  • H. K. Yun
    • 1
  1. 1.Department of Horticulture and Life ScienceYeungnam UniversityGyeongsanSouth Korea
  2. 2.Highland Agriculture Research CenterNational Institute of Crop SciencePyeongchangSouth Korea

Personalised recommendations