Biologia Plantarum

, Volume 58, Issue 4, pp 681–688 | Cite as

The genetic basis of durum wheat germination and seedling growth under osmotic stress

  • M. Nagel
  • S. Navakode
  • V. Scheibal
  • M. Baum
  • M. Nachit
  • M. S. Röder
  • A. Börner
Original Papers


Durum wheat (Triticum turgidum L. var. durum) is mainly produced under rainfed but often sub-optimal moisture conditions in the Mediterranean basin. A set of 114 durum wheat recombinant inbred lines (RILs) developed from the cross of cultivars Omrabi5 × Belikh2 were tested for the ability to tolerate moisture deficiency at the germination and early seedling growth stage. The stress was imposed by exposing the germinating grain to 12 % polyethylene glycol. It induced a measurable reduction in root length, shoot length, and the percentage of normal seedlings. The germination and seedling growth of Belikh2 were more strongly inhibited than those of Omrabi5, and both parents were outperformed by > 50 % of the RILs. A quantitative trait locus (QTL) analysis was carried out by first assembling a linkage map from 265 informative microsatellites. Composite interval mapping revealed nine QTL spread over seven chromosomes. Five of these were associated with coleoptile length, and one of the five explained nearly 29 % of the relevant phenotypic variance. The coleoptile length was significantly correlated with the seedling growth, plant height, and thousand kernel mass derived from field-grown plants of the same RIL population.

Additional key words

drought stress polyethylene glycol QTL recombinant inbred lines seed size seed vigour Triticum durum 



Beltsville Agricultural Research Centre


Gatersleben Wheat Microsatellite


broad-sense heritability


International Center for Agricultural Research in the Dry Areas


International Seed Testing Association


logarithm of odds


normal seedling


polyethylene glycol


quantitative trait locus


recombinant inbred line


total germinated seedlings


tolerance index


Wheat Microsatellite Consortium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2014_436_MOESM1_ESM.pdf (49 kb)
Supplementary material, approximately 48.6 KB.


  1. Akinci, C., Yildirim, M., Bahar, B.: The effects of seed size on emergence and yield of durum wheat. — J. Food Agr. Environ. 6: 234–237, 2008.Google Scholar
  2. Almansouri, M., Kinet, J.M., Lutts, S.: Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). — Plant Soil 231: 243–254, 2001.CrossRefGoogle Scholar
  3. Blanco, A., Lotti, C., Simeone, R., Signorile, A., De Santis, V., Pasqualone, A., Troccoli, A., Di Fonzo, N.: Detection of quantitative trait loci for grain yield and yield components across environments in durum wheat. — Cereal Res. Commun. 29: 237–244, 2001.Google Scholar
  4. Blum, A.: Osmotic adjustment and growth of barley genotypes under drought stress. — Crop Sci. 29: 230–233, 1989.CrossRefGoogle Scholar
  5. Blum, A.: Crop responses to drought and the interpretation of adaptation. — Plant Growth Regul. 20: 135–148, 1996.CrossRefGoogle Scholar
  6. Börner, A., Röder, M., Korzun, V.: Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). — Theor. appl. Genet. 95: 1133–1137, 1997.CrossRefGoogle Scholar
  7. Bouaziz, A., Hicks, D.R.: Consumption of wheat seed reserves during germination and early growth as affected by soilwater potential. — Plant Soil 128: 161–165, 1990.CrossRefGoogle Scholar
  8. Chazen, O., Hartung, W., Neumann, P.M.: The different effects of PEG-6000 and NaCl on leaf development are associated with differential inhibition of root water transport. — Plant Cell Environ. 18: 727–735, 1995.CrossRefGoogle Scholar
  9. Chen, G.X., Krugman, T., Fahima, T., Chen, K.G., Hu, Y.G., Roder, M., Nevo, E., Korol, A.: Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. — Genet. Resour. Crop Evol. 57: 85–99, 2010.CrossRefGoogle Scholar
  10. Collins, N.C., Tardieu, F., Tuberosa, R.: Quantitative trait loci and crop performance under abiotic stress: where do we stand? — Plant Physiol. 147: 469–486, 2008.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Connell, P., Lawrance, L., Nelson, R.: Durum wheat — Australia’s role in world markets. — Aust. Commodities 11: 319–324, 2004.Google Scholar
  12. Czyczylo-Mysza, I., Marcinska, I., Skrzypek, E., Chrupek, M., Grzesiak, S., Hura, T., Stojalowski, S., Myskow, B., Milczarski, P., Quarrie, S.: Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. — Plant Genet. Resour. Charact. Utilization 9: 291–295, 2011.CrossRefGoogle Scholar
  13. Ganal, M.W., Röder, M.: Microsatellite and SNP markers in wheat breeding. — In: Varshney, R.K., Tuberosa, R. (ed.): Genomics Assisted Crop Improvement. Vol. 2. Pp. 1–24. Springer, Dordrecht 2007.CrossRefGoogle Scholar
  14. Golabadi, M., Arzani, A., Maibody, S.A.M.M., Tabatabaei, B.E.S., Mohammadi, S.A.: Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. — Euphytica 177: 207–221, 2011.CrossRefGoogle Scholar
  15. González, Á., Ayerbe, L.: Response of coleoptiles to water deficit: growth, turgor maintenance and osmotic adjustment in barley plants (Hordeum vulgare L.). — Agr. Sci. 2: 159–166, 2011.Google Scholar
  16. Habash, D.Z., Kehel, Z., Nachit, M.: Genomic approaches for designing durum wheat ready for climate change with a focus on drought. — J. exp. Bot. 60: 2805–2815, 2009.PubMedCrossRefGoogle Scholar
  17. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R., Panneerselvam, R.: Drought stress in plants: a review on morphological characteristics and pigments composition. — Int. J. Agr. Biol. 11: 100–105, 2009.Google Scholar
  18. Kato, Y., Hirotsu, S., Nemoto, K., Yamagishi, J.: Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture. — Euphytica 160: 423–430, 2008.CrossRefGoogle Scholar
  19. Kaydan, D., Yagmur, M.: Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. — Afr. J. Biotechnol. 7: 2862–2868, 2008.Google Scholar
  20. Khurana, E., Singh, J.S.: Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. — Environ. Conserv. 28: 39–52, 2001.CrossRefGoogle Scholar
  21. Kosambi, D.D.: The estimation of map distance from recombination values. — Ann. Eugenics 12: 172–175, 1944.CrossRefGoogle Scholar
  22. Kulkarni, M., Deshpande, U.: In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. — Afr. J. Biotechnol. 6: 691–696, 2007.Google Scholar
  23. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L.: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. — Genomics 1: 174–181, 1987.PubMedCrossRefGoogle Scholar
  24. Landjeva, S., Neumann, K., Lohwasser, U., Börner, A.: Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. — Biol. Plant. 52: 259–266, 2008.CrossRefGoogle Scholar
  25. Leishman, M.R., Westoby, M.: The role of seed size in seedling establishment in dry soil conditions — experimental evidence from semiarid species. — J. Ecol. 82: 249–258, 1994.CrossRefGoogle Scholar
  26. Liu, X., Li, R., Chang, X., Jing, R.: Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. — Euphytica 189: 51–66, 2013.CrossRefGoogle Scholar
  27. Maccaferri, M., Sanguineti, M.C., Corneti, S., Ortega, J.L.A., Ben Salem, M., Bort, J., DeAmbrogio, E., Del Moral, L.F.G., Demontis, A., El-Ahmed, A., Maalouf, F., Machlab, H., Martos, V., Moragues, M., Motawaj, J., Nachit, M., Nserallah, N., Ouabbou, H., Royo, C., Slama, A., Tuberosa, R.: Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. — Genetics 178: 489–511, 2008.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Maccaferri, M., Sanguineti, M.C., Demontis, A., El-Ahmed, A., Del Moral, L.G., Maalouf, F., Nachit, M., Nserallah, N., Ouabbou, H., Rhouma, S., Royo, C., Villegas, D., Tuberosa, R.: Association mapping in durum wheat grown across a broad range of water regimes. — J. exp. Bot. 62: 409–438, 2011.PubMedCrossRefGoogle Scholar
  29. McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? — New Phytol. 178: 719–739, 2008.PubMedCrossRefGoogle Scholar
  30. Mian, M.A.R., Nafziger, E.D.: Seed size and water potential effects on germination and seedling growth of winter-wheat. — Crop Sci. 34: 169–171, 1994.CrossRefGoogle Scholar
  31. Michel, B.E., Kaufmann, M.R.: Osmotic potential of polyethylene-glycol 6000. — Plant Physiol. 51: 914–916, 1973.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Mut, Z., Akay, H., Aydin, N.: Effects of seed size and drought stress on germination and seedling growth of some oat genotypes (Avena sativa L.) — Afr. J. agr. Res. 5: 1101–1107, 2010.Google Scholar
  33. Nachit, M., Elouafi, I.: Durum wheat adaptation in the Mediterranean dryland: breeding, stress physiology, and molecular markers. — Crop Sci. 32: 203–218, 2004.Google Scholar
  34. Nagel, M., Vogel, H., Landjeva, S., Buck-Sorlin, G., Lohwasser, U., Scholz, U., Börner, A.: Seed conservation in ex-situ genebanks — genetic studies on longevity in barley. — Euphytica 170: 1–10, 2009.CrossRefGoogle Scholar
  35. Palta, J.A., Chen, X., Milroy, S.P., Rebetzke, G.J., Dreccer, M.F., Watt, M.: Large root systems: are they useful in adapting wheat to dry environments? — Funct. Plant Biol. 38: 347–354, 2011.CrossRefGoogle Scholar
  36. Passioura, J.B.: Roots and drought resistance. — Agr. Water Manage. 7: 265–280, 1983.CrossRefGoogle Scholar
  37. Rebetzke, G.J., Ellis, M.H., Bonnett, D.G., Richards, R.A.: Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). — Theor. appl. Genet. 114: 1173–1183, 2007.PubMedCrossRefGoogle Scholar
  38. Rebetzke, G.J., Richards, R.A., Fischer, V.M., Mickelson, B.J.: Breeding long coleoptile, reduced height wheats. — Euphytica 106: 159–168, 1999.CrossRefGoogle Scholar
  39. Reza, T., Fayaz, F., Naji, A.M.: Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). — Gen. appl. Plant Physiol. 35: 64–74, 2009.Google Scholar
  40. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P., Ganal, M.W.: A microsatellite map of wheat. — Genetics 149: 2007–2023, 1998.PubMedPubMedCentralGoogle Scholar
  41. Rosyara, U.R., Ghimire, A.A., Subedi, S., Sharma, R.C.: Variation in south Asian wheat germplasm for seedling drought tolerance traits. — Plant genet. Resources Charact. Utilization 7: 88–93, 2009.CrossRefGoogle Scholar
  42. Sade, B., Soylu, S., Yetim, E.: Drought and oxidative stress. — Afr. J. Biotechnol. 10: 11102–11109, 2011.Google Scholar
  43. Schutte, B.J., Regnier, E.E., Harrison, S.K.: The association between seed size and seed longevity among maternal families in Ambrosia trifida L. populations. — Seed Sci. Res. 18: 201–211, 2008.CrossRefGoogle Scholar
  44. Schwienbacher, E., Marcante, S., Erschbamer, B.: Alpine species seed longevity in the soil in relation to seed size and shape — A 5-year burial experiment in the Central Alps. — Flora 205: 19–25, 2010.CrossRefGoogle Scholar
  45. Song, Q.J., Shi, J.R., Singh, S., Fickus, E.W., Costa, J.M., Lewis, J., Gill, B.S., Ward, R., Cregan, P.B.: Development and mapping of microsatellite (SSR) markers in wheat. — Theor. appl. Genet. 110: 550–560, 2005.PubMedCrossRefGoogle Scholar
  46. Spielmeyer, W., Hyles, J., Joaquim, P., Azanza, F., Bonnett, D., Ellis, M.E., Moore, C., Richards, R.A.: A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. — Theor. appl. Genet. 115: 59–66, 2007.PubMedCrossRefGoogle Scholar
  47. Tuberosa, R., Salvi, S.: Genomics-based approaches to improve drought tolerance of crops. — Trends Plant Sci. 11: 405–412, 2006.PubMedCrossRefGoogle Scholar
  48. Utz, H.F.: PlabStat (version 3A). A computer program for statistical analysis of plant breeding experiments. — In: Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 2011.Google Scholar
  49. Vadez, V., Kholova, J., Zaman-Allah, M., Belko, N.: Water: the most important’ molecular’ component of water stress tolerance research. — Funct. Plant Biol. 40: 1310–1322, 2013.CrossRefGoogle Scholar
  50. Verslues, P.E., Ober, E.S., Sharp, R.E.: Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. — Plant Physiol. 116: 1403–1412, 1998.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Wang, S., Basten, C.J., Zeng, Z.-B.: Windows QTL Cartographer 2.5, — In. Department of Statistics, North Carolina State University, Raleigh, 2011. (
  52. Willenborg, C.J., Wildeman, J.C., Miller, A.K., Rossnagel, B.G., Shirtliffe, S.J.: Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. — Crop Sci. 45: 2023–2029, 2005.CrossRefGoogle Scholar
  53. Wu, Y., Cosgrove, D.J.: Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. — J. exp. Bot. 51: 1543–1553, 2000.PubMedCrossRefGoogle Scholar
  54. Zhang, H., Cui, F., Wang, H.: Detection of quantitative trait loci (QTLs) for seedling traits and drought tolerance in wheat using three related recombinant inbred line (RIL) populations. — Euphytica ??: 1–18, 2013a.Google Scholar
  55. Zhang, H., Cui, F., Wang, L., Li, J., Ding, A., Zhao, C., Bao, Y., Yang, Q., Wang, H.: Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. — J. Genet. 92: 213–231, 2013b.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Nagel
    • 1
  • S. Navakode
    • 1
  • V. Scheibal
    • 1
  • M. Baum
    • 2
  • M. Nachit
    • 2
  • M. S. Röder
    • 1
  • A. Börner
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben)Stadt SeelandGermany
  2. 2.International Center for Agricultural Research in the Dry Areas (ICARDA)AleppoSyria

Personalised recommendations