Biologia Plantarum

, Volume 58, Issue 2, pp 283–295 | Cite as

Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress

  • A. CaffagniEmail author
  • N. Pecchioni
  • E. Francia
  • D. Pagani
  • J. Milc
Original Papers


Tomato (Solanum lycopersicum Mill.) is sensitive to chilling stress during all stages of plant development. Genetic variation for chilling tolerance exists between cultivated tomato and its related wild species, but intra-specific variation has not been thoroughly investigated so far. Seedlings of 63 tomato accessions were evaluated under low temperature and two contrasting cultivars were identified for the trait: Albenga and San Marzano, the former being more chillingtolerant. To clarify the molecular mechanisms of chilling tolerance in tomato, changes in candidate gene expressions in the two tomato genotypes were analysed, using quantitative RT-PCR. Candidate genes were chosen among those known to be induced by chilling and/or with putative roles in CBF/DREB and ROS-mediated pathways. Results show that besides a CBF regulon, whose function is conserved, ROS and C2H2-type zinc finger protein-mediated cold signalling pathways were also involved in chilling tolerance. Under the chilling stress, the up-regulation of respective transcripts was consistently higher in the chilling-tolerant genotype than in the chilling-sensitive ones.

Additional key words

C2H2-type zinc finger protein CBF/DREB pathway ROS-mediated pathway Solanum lycopersicum 



abscisic acid


APETALA 2/ethylene response factor


auxin/indole-3-acetic acid


basic region-leucine zipper


C-repeat binding factor/dehydration-responsive element binding




C-repeat/dehydration responsive element


cycle threshold




Duncan’s multiple range test


ERF-associated amphiphilic repression motif


elongation factor 1-α


electrolyte leakage


ethylene response factor


fatty acid desaturase


generalized linear model


introgression lines


late embryogenesis abundant




nuclear localization signal


no template control


reverse transcription-quantitative PCR


randomized complete block design


relative expression software tool©


reactive oxygen species


sol genomics network


transcription factors


universal stress protein


wild type


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10535_2014_403_MOESM1_ESM.pdf (409 kb)
Supplementary material, approximately 408 KB.
10535_2014_403_MOESM2_ESM.pdf (112 kb)
Supplementary material, approximately 111 KB.


  1. Alam, B., Jacob, J.: Overproduction of photosynthetic electrons is associated with chilling injury in green leaves. — Photosynthetica 40: 91–95, 2002.CrossRefGoogle Scholar
  2. Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.PubMedCrossRefGoogle Scholar
  3. Asada, K., Takahashi, M.: Production and scavenging of active oxygen in photosynthesis. — In: Kyle, D.J., Osmond, C.B., Arntzen, C.J. (ed.): Photoinhibition: Topics in Photosynthesis. Pp. 227–287. Elsevier Scientific Publishers, Amsterdam 1987.Google Scholar
  4. Bloom, A.J., Zwieniecki, M.A., Passioura, J.B., Randall, L.B., Holbrook, N.M., St. Clair, D.A.: Water relations under root chilling in a sensitive and tolerant tomato species. — Plant Cell Environ. 27: 971–979, 2004.CrossRefGoogle Scholar
  5. Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martínez, J., Alberdi, M., Close, T.J., Corcuera, L.J.: Cryoprotective activity of a cold induced dehydrin purified from barley. — Physiol. Plant. 118: 262–269, 2003.CrossRefGoogle Scholar
  6. Breton, G., Danyluk, J., Charron, J.B., Sarhan, F.: Expression profiling and bioinformatic analyses of a novel stressregulated multispanning transmembrane protein family from cereals and Arabidopsis. — Plant Physiol. 132: 64–74, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Cheng, C., Yun, K.Y., Ressom, H., Mohanty, B., Bajic, V.B., Jia, Y., Yun, S.J., De los Reyes, B.G.: An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. — BMC Genomics 8: e175, 2007.CrossRefGoogle Scholar
  8. Christie, P.J., Alfenito, M.R., Walbot, V.: lmpact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. — Planta 194: 541–549, 1994.CrossRefGoogle Scholar
  9. Close, T.J.: Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. — Physiol. Plant. 97: 795–803, 1996.CrossRefGoogle Scholar
  10. Close, T.J.: Dehydrins: a commonality in the response of plants to dehydration and low temperature. — Physiol. Plant. 100: 291–296, 1997.CrossRefGoogle Scholar
  11. Cook, D., Fowler, S., Fiehn, O., Thomashow, M.F.: A prominent role for the CBF cold response pathway in configuring the low temperature metabolome of Arabidopsis. — Proc. nat. Acad. Sci. USA 101: 15243–15248, 2004.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Crifò, T., Puglisi, I., Petrone, G., Recupero, R., Piero, A.R.L.: Expression analysis in response to low temperature stress in blood oranges: implication of the flavonoid biosynthetic pathway. — Gene 476: 1–9, 2011.PubMedCrossRefGoogle Scholar
  13. Desikan, R., Mackerness, S.A.H., Hancock, J.T., Neill, S.J.: Regulation of the Arabidopsis transcriptome by oxidative stress. — Plant Physiol. 127: 159–172, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Elizondo, R., Oyanedel, E.: Field testing of tomato chilling tolerance under varying light and temperature conditions. — Chil. J. agr. Res. 70: 552–558, 2010.CrossRefGoogle Scholar
  15. Eriksson, S.K., Kutzer, M., Procek, J., Grobner, G., Harryson, P.: Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. — Plant Cell 23: 2391–2404, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fernandez, P., Rienzo, J.D., Fernandez, L., Hopp, H.E., Paniego, N., Heinz, R.A.: Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. — BMC Plant Biol. 8: 11, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Foolad, M.R., Lin, G.Y.: Relationship between cold tolerance during seed germination and vegetative growth in tomato: Germplasm evaluation. — J. amer. Soc. hort. Sci. 125: 679–683, 2000.Google Scholar
  18. Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. — Plant Cell 14:1675–1690, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. — Plant Physiol. 124: 1854–1865, 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Goodstal, F.J., Kohler, G.R., Randall, L.B., Bloom, A.J., St Clair, D.A.: A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum). — Theor. appl Genet. 111: 898–905, 2005.CrossRefGoogle Scholar
  21. Gupta, N., Rathore, M., Goyary, D., Khare, N., Anandhan, S., Pande, V., Ahmed, Z.: Marker-free transgenic cucumber expressing Arabidopsis cbf1 gene confers chilling stress tolerance. — Biol. Plant. 56: 57–63, 2012.CrossRefGoogle Scholar
  22. He, L.G., Wang, H.L., Liu, D.C., Zhao, Y.J., Xu, M., Zhu, M., Wei, G.Q., Sun Z.H.: Isolation and expression of a coldresponsive gene PtCBF in Poncirus trifoliata and isolation of citrus CBF promoters. — Biol. Plant. 56: 484–492, 2012.CrossRefGoogle Scholar
  23. Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. — Plant Physiol. 127: 910–917, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. — Science 280:104-106, 1998.Google Scholar
  25. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F.: bZIP transcription factors in Arabidopsis. — Trends Plant Sci. 7: 106–111, 2002.PubMedCrossRefGoogle Scholar
  26. Kasuga, M., Kiu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Nat. Biotechnol. 17: 287–291, 1999.PubMedCrossRefGoogle Scholar
  27. Kiełbowicz-Matuk, A.: Involvement of plant C2H2-type zinc finger transcription factors in stress responses. — Plant Sci. 185-186: 78–85, 2012.PubMedCrossRefGoogle Scholar
  28. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M., Iba, K.: Genetic enhancement of cold tolerance by expression of a gene for chloroplast v-3 fatty acid desaturase in transgenic tobacco. — Plant Physiol. 105: 601–605, 1994.PubMedCentralPubMedGoogle Scholar
  29. Kovacs, D., Kalmar, E., Torok, Z., Tompa, P.: Chaperone activity of ERD10 and ERD14, two disordered stressrelated plant proteins. — Plant Physiol. 147: 381–390, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kusano, T., Berberich, T., Harada, M., Suzuki, N., Sugawara, K.: A maize DNA-binding factor with a bZIP motif is induced by low temperature. — Mol. Genet. Genomics 248: 507–517, 1995.CrossRefGoogle Scholar
  31. Larkindale, J., Knight, M.R.: Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. — Plant Physiol. 128: 682–695, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Leyva, A., Jarillo, J.A., Salinas, J., Martinez-Zapater, J.I.M.: Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. — Plant Physiol. 108: 39–46, 1995.PubMedCentralPubMedGoogle Scholar
  33. Lin, Y.H., Hwang, S.Y., Hsu, P.Y., Chiang, Y.C., Huang, C.L., Wang, C.N., Lin, T.P.: Molecular population genetics and gene expression analysis of duplicated CBF genes of Arabidopsis thaliana. — BMC Plant Biol. 8: 111, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Liu, H., Ouyang, B., Zhang, J., Wang, T., Li, H., Zhang, Y., Yu, C., Ye, Z.: Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. — PLoS One 7: e50785, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Liu, X.Y., Yang, J.H., Li, B., Yang, X.M., Meng, Q.W.: Antisense-mediated depletion of tomato chloroplast omega-3 fatty acid desaturase enhances thermal tolerance. — J. Integr. Plant Biol. 48: 1096–1107, 2006.CrossRefGoogle Scholar
  36. Liu, X.Y., Li, B., Yang, J.H., Sui, N., Yang, X.M., Meng, Q.W.: Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress. — Photosynthetica 46: 185–192, 2008.CrossRefGoogle Scholar
  37. Løvdal, T., Lillo, C.: Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. — Anal. Biochem. 387: 238–242, 2009.PubMedCrossRefGoogle Scholar
  38. Lyons, J.M.: Chilling injury in plants. — Annu. Rev. Plant Physiol. 24: 445–466, 1973.CrossRefGoogle Scholar
  39. Mantyla, E., Lang, V., Palva, E.T.: Role of abscisic acid in drought induced freezing tolerance, cold acclimation, and accumulation of LTl78 and RABl8 proteins in Arabidopsis thaliana. — Plant Physiol. 107: 141–148, 1995.PubMedCentralPubMedGoogle Scholar
  40. Mao, D., Chen, C.: Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. — PLoS One 7: e47275, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Mboup, M., Fischer, I., Lainer, H., Stephan, W.: Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. — Mol. Biol. Evol. 29: 3641–3652, 2012.PubMedCrossRefGoogle Scholar
  42. McKhann, H.I., Gery, C., Bérard, A., Lévêque, S., Zuther, E., Hincha, D.K., De Mita, S., Brunel, D., Teoule, E.: Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. — BMC Plant Biol. 8: 105, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.PubMedCrossRefGoogle Scholar
  44. Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F.: Reactive oxygen gene network of plants. — Trends Plant Sci. 9: 490–498, 2004.PubMedCrossRefGoogle Scholar
  45. Miura, K., Shiba, H., Ohta, M., Kang, S.W., Sato, A., Yuasa, T., Iwaya-Inoue, M., Kamada, H., Ezura, H.: SlICE1 encoding a MYC-type transcription factor controls cold tolerance in tomato, Solanum lycopersicum. — Plant Biotechnol. 29: 253–260, 2012.CrossRefGoogle Scholar
  46. Morsy, M.R., Almutairi, A.M., Gibbons, J., Yun, S.J., De los Reyes, B.G.: The OsLti6 genes encoding low-molecularweight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. — Gene 344: 171–180, 2005.PubMedCrossRefGoogle Scholar
  47. Movahedi, S., Sayed Tabatabaei, B.E., Alizade, H., Ghobadi, C., Yamchi, A., Khaksar, G.: Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. — Biol. Plant. 56: 37–42, 2012.CrossRefGoogle Scholar
  48. Neill, S., Desikan, R., Hancock, J.: Hydrogen peroxide signaling. — Curr. Opin. Plant Biol. 5: 388–395, 2002.PubMedCrossRefGoogle Scholar
  49. Okawa, K., Nakayama, K., Kakizaki, T., Yamashita, T., Inaba, T.: Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope. — Plant Cell Environ. 31: 1470–1483, 2008.PubMedCrossRefGoogle Scholar
  50. Orino, K., Lehman, L., Tsuji, Y., Ayaki, H., Torti, S.V., Torti, F.M.: Ferritin and the response to oxidative stress. — Biochem. J. 357: 241–247, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Orlova, I.V., Serebriiskaya, T.S., Popov, V., Merkulova, N., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., Los, D.A.: Transformation of tobacco with a gene for the thermophylic acyl-lipid desaturase enhances the chilling tolerance of plants. — Plant Cell Physiol. 44: 447–450, 2003.PubMedCrossRefGoogle Scholar
  52. Pan, Y., Seymour, G.B., Lu, C., Hu, Z., Chen, X., Chen, G.: An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. — Plant Cell Rep. 31: 349–360, 2012.PubMedCrossRefGoogle Scholar
  53. Pennycooke, J.C., Cox, S., Stushnoff, C.: Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia × hybrida). — Environ. exp. Bot. 53: 225–232, 2005.CrossRefGoogle Scholar
  54. Pfaffl, M.W., Horgan, G.W., Dempfle, L.: Relative expression software tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. — Nucl. Acids Res. 30: e36, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Prasad, T.K.: Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids and protease activities. — Plant J. 10: 1017–1026, 1996.CrossRefGoogle Scholar
  56. Puhakainen, T., Hess, M.W., Mäkelä, P., Svensson, J., Heino, P., Palva, E.T.: Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. — Plant mol. Biol. 54: 743–753, 2004.PubMedCrossRefGoogle Scholar
  57. Raison, J.K., Lyons, J.M.: Chilling injury: a plea for uniform terminology. — Plant Cell Environ. 9: 685–686, 1986.CrossRefGoogle Scholar
  58. Rice-Evans, C.A., Miller, N.J., Paganga, G.: Antioxidant properties of phenolic compounds. — Trends Plant Sci. 2: 152–159, 1997.CrossRefGoogle Scholar
  59. Rizza, F., Crosatti, C., Stanca, A.M., Cattivelli, L.: Studies for assessing the influence of hardening on cold tolerance of barley genotypes. — Euphytica 75: 131–138, 1994.CrossRefGoogle Scholar
  60. Sauter, M., Rzewuski, G., Marwedel, T., Lorbiecke, R.: The novel ethylene regulated gene OsUsp1 from rice encodes a member of a plant protein family related to prokaryotic universal stress proteins. — J. exp. Bot. 53: 2325–2331, 2002.PubMedCrossRefGoogle Scholar
  61. Scott, S.J., Jones, R.A.: Low temperature seed germination of Lycopersicon species evaluated by survival analysis. — Euphytica 31: 869–883, 1982.CrossRefGoogle Scholar
  62. Seong, E.S., Kwon, S.S., Ghimire, B.K., Yu, C.Y., Cho, D.H., Lim, J.D., Kim, K.S., Heo, K., Lim, E.S., Chung, I.M., Kim, M.J., Lee, Y.S.: LebZIP2 induced by salt and drought stress and transient overexpression by Agrobacterium. — BMB Rep. 41: 693–698, 2008.PubMedCrossRefGoogle Scholar
  63. Sharma, M.K., Kumar, R., Solanke, A.U., Sharma, R., Tyagi, A.K., Sharma, A.K.: Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. — Mol. Genet. Genomics 284: 455–475, 2010.PubMedCrossRefGoogle Scholar
  64. Somerville, C., Browse, J.: Plant lipids: metabolism, mutants, and membranes. — Science 252: 80–87, 1991.PubMedCrossRefGoogle Scholar
  65. Tanaka, Y., Sasaki, N., Ohmiya, A.: Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. — Plant J. 54: 733–749, 2008.PubMedCrossRefGoogle Scholar
  66. The Tomato Genome Consortium: the tomato genome sequence provides insights into fleshy fruit evolution. — Nature 485: 635–641, 2012.CrossRefGoogle Scholar
  67. Theocharis, A., Clément, C., Barka, E.A.: Physiological and molecular changes in plants grown at low temperatures. — Planta 235: 1091–1105, 2012.PubMedCrossRefGoogle Scholar
  68. Thomashow, M.F.: Plant cold acclimation: freezing tolerances genes and regulatory mechanisms. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.PubMedCrossRefGoogle Scholar
  69. Thomashow, M.F.: So what’s new in the field of plant cold acclimation? Lots! — Plant Physiol. 125: 89–93, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Thomashow, M.F.: Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. — Plant Physiol. 154: 571–577, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Torres, M.A., Dangl, J.L.: Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. — Curr. Opin. Plant Biol. 8: 397–403, 2005.PubMedCrossRefGoogle Scholar
  72. Truco, M.J., Randall, L.B., Bloom, A.J., St. Clair, D.A.: Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum X L. hirsutum. — Theor. appl. Genet. 101: 1082–1092, 2000.CrossRefGoogle Scholar
  73. Vallejos, C.E., Pearcy, R.W.: Differential acclimation potential to low temperature in two species of Lycopersicon: photosynthesis and growth. — Can. J. Bot. 65: 1303–1307, 1987.CrossRefGoogle Scholar
  74. Vannini, C., Iriti, M., Bracale, M., Locatelli, F., Faoro, F., Croce, P., Pirona, R., Di Maro, A., Coraggio, I., Genga, A.: The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. — Physiol. mol. Plant Pathol. 69: 26–42, 2006.CrossRefGoogle Scholar
  75. Venema, J.H., Posthumus, F., De Vries, M., Van Hasselt, P.R.: Differential response of domestic and wild Lycopersicon species to chilling under low light: growth, carbohydrate content, photosynthesis and the xanthophyll cycle. — Physiol. Plant. 105: 81–88, 1999.CrossRefGoogle Scholar
  76. Venema, J.H., Linger, P., Van Heusden, A.W., Van Hasselt, P.R., Bruggemann, W.: The inheritance of chilling tolerance in tomato (Lycopersicon spp.). — Plant Biol. 7: 118–130, 2005.PubMedCrossRefGoogle Scholar
  77. Weiss, J., Egea-Cortines, M.: Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress. — J. appl. Genetics 50: 311–319, 2009.CrossRefGoogle Scholar
  78. Wolf, S., Yakir, D., Stevens, M.A., Rudich, J.: Cold temperature tolerance of wild tomato species. — J. amer. Soc. hort. Sci. 111: 960–964, 1986.Google Scholar
  79. Xiao, H., Tattersall, E.A., Siddiqua, M.K., Cramer, G.R., Nassuth, A.: CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. — Plant Cell Environ. 31: 1–10, 2008.PubMedGoogle Scholar
  80. Yu, C., Wang, H.S., Yang, S., Tang, X.F., Duan, M., Meng, Q.W.: Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. — Plant Physiol. Biochem. 47: 1102–1112, 2009.PubMedCrossRefGoogle Scholar
  81. Yun, K.Y., Park, M.R., Mohanty, B., Herath, V., Xu, F., Mauleon, R., Wijaya, E., Bajic, V.B., Bruskiewich, R., De los Reyes, B.: Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. — BMC Plant Biol. 10: e16, 2010.CrossRefGoogle Scholar
  82. Zhang, T., Zhao, X., Wang, W., Pan, Y., Huang, L., Liu, X., Zong, Y., Zhu, L., Yang, D., Fu, B.: Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. — PLoS One 7: e43274, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J., Thomashow, M.F.: Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. — Plant J. 39: 905–919, 2004.PubMedCrossRefGoogle Scholar
  84. Zhang, X., Guo, X., Lei, C., Cheng, Z., Lin, Q., Wang, J., Wu, F., Wang, J., Wan, J.: Overexpression of SlCZFP1, a novel TFIIIA-type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. — Plant mol. Biol. Rep. 29: 185–196, 2011.CrossRefGoogle Scholar
  85. Zhao, H.X., Li, Q., Li, G., Du, Y.: Differential gene expression in response to cold stress in Lepidium apetalum during seedling emergence. — Biol. Plant. 56: 64–70, 2012.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Caffagni
    • 1
    Email author
  • N. Pecchioni
    • 1
    • 2
  • E. Francia
    • 1
    • 2
  • D. Pagani
    • 3
  • J. Milc
    • 1
    • 2
  1. 1.Interdepartmental Research Centre BIOGEST-SITEIAUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  2. 2.Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  3. 3.Genomics Research CentreFiorenzuola d’ArdaItaly

Personalised recommendations