Advertisement

Biologia Plantarum

, Volume 58, Issue 2, pp 265–273 | Cite as

Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice

  • H. I. KhattabEmail author
  • M. A. Emam
  • M. M. Emam
  • N. M. Helal
  • M. R. Mohamed
Original Papers

Abstract

Drought is one of the main environmental stresses and many investigators identified beneficial effects of both silicon and selenium on plant growth and development. To examine the effects of Si and Se on rice (Oryza sativa L.) responses to drought, two cultivars Giza 177 and IET 1444 pretreated with 1.5 mM Si or 0.03 mM Se were then exposed to a water stress until leaf rolling was observed. The enhanced growth of Se or Si pre-treated plants was associated with a significant increase in the content of proline and glycine betaine in both shoots and roots. Furthermore, the transcription factors (TFs), dehydration responsive element-binding protein DREB2A, and NAC5 [no apical meristem (NAM), Arabidopsis thaliana activating factor (ATAF), and cup-shaped cotyledon (CUC)] were over-expressed in the drought stressed rice shoots. Notably, a pretreatment with either Se or Si significantly enhanced the expression of both TFs, DREB2A, NAC5, as well as the expression of the ring domain containing OsRDCP1 gene and some drought specific genes, such as OsCMO coding rice choline monooxygenase and dehydrin OsRAB16b. Expression of TFs and the studied genes was markedly enhanced in the Si-stressed shoots of cv. IET 1444 which favors its drought tolerance.

Additional key words

dehydration responsive element glycine betaine Oryza sativa proline water stress 

Abbreviations

ABA

abscisic acid

ATAF

Arabidopsis thaliana activating factor

CMO

choline monooxygenase

CUC

cupshaped cotyledon

DREB

dehydration responsive element-binding protein

GB

glycine betaine

NAC

acronym derived from the genes NAM/ATAF/CUC

Pro

proline

RDCP

ring domain containing protein

ROS

reactive oxygen species

TFs

transcription factors

Ub

ubiquitin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarie, S., Uchida, H., Qgata, W., Kubota, F., Kaufman, P.B.: Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). — Plant Prod. Sci. 1: 89–95, 1998.CrossRefGoogle Scholar
  2. Andjelkovic, V., Thompson, R.: Changes in gene expression in maize kernel in response to water and salt stress. — Plant Cell Rep. 25: 71–79, 2006.PubMedCrossRefGoogle Scholar
  3. Armengaud, P., Thierry, L., Buhot, N., Grenier-de March, G., Savouré, A.: Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. — Physiol. Plant. 120: 442–450, 2004.PubMedCrossRefGoogle Scholar
  4. Ashraf, M.: Inducing drought tolerance in plants: some recent advances. — Biotechnol. Adv. 28: 169–183, 2010.PubMedCrossRefGoogle Scholar
  5. Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance. — Environ. exp. Bot. 59: 206–216, 2007.CrossRefGoogle Scholar
  6. Bae, H., Kim, S.K., Cho, S.K., Kang, B.G., Kim, W.T.: Over expression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). — Plant. Sci. 180: 775–782, 2011.PubMedCrossRefGoogle Scholar
  7. Bartels, D., Sunkar, R.: Drought and salt tolerance in plants. — Crit. Rev. Plant. Sci. 24: 23–58, 2005.CrossRefGoogle Scholar
  8. Bates, I.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. — Plant. Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  9. Bies-Ethève, N., Gaubier-Comella, P., Debures, A., Lasserre, E., Jobet, E., Raynal, M., Cooke, R., Delseny, M.: Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. — Plant mol. Biol. 67: 107–724, 2008.PubMedCrossRefGoogle Scholar
  10. Blumwald, E., Grover, A., Good, A.G.: Breeding for abiotic stress resistance: challenges and opportunities. — In: Fischer, R.A. (ed.): New Directions for a Diverse Planet (Proceeding of the 4th International Crop Science Congress). Brisbane 2004.Google Scholar
  11. Buchanan, C.D., Lim, S.Y., Salzman, R.A.: Sorghum bicolor transcriptome response to dehydration, high salinity and ABA. — Plant. mol. Biol. 58: 699–720, 2005.PubMedCrossRefGoogle Scholar
  12. Burnet, M., Lafontaine, P.J., Hanson, A.D.: Assay, purification, and partial characterization of choline monooxygenase from spinach. — Plant Physiol. 108: 581–588, 1995.PubMedCentralPubMedGoogle Scholar
  13. Chaitanya, K.V., Rasineni, G.K., Reddy, A.R.: Biochemical responses to drought stress in mulberry (Morus alba L.): evaluation of proline, glycine betaine and abscisic acid accumulation in five cultivars. — Acta Physiol. Plant. 31: 437–443, 2010.CrossRefGoogle Scholar
  14. Chaves, M.M., Oliveira, M.M.: Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. — J. exp. Bot. 55: 2365–2384, 2004.PubMedCrossRefGoogle Scholar
  15. Chazen, O., Neumann, P.M.: Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea mays L.) leaves are primary responses to polyethylene glycolinduced water deficits. — Plant Physiol. 104: 1385–1392, 1994.PubMedCentralPubMedGoogle Scholar
  16. Chen, J.Q., Meng, Q.P., Zhang, Y., Xia M., Wang, X.P.: Over expression of OsDREB genes lead to enhanced drought tolerance in rice. — Biotechnol. Lett. 30: 2191–2198, 2008.PubMedCrossRefGoogle Scholar
  17. Chomczynski, P., Mackey, K., Modification of the TRI Reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. — BioTechniques 19: 924–945, 1995.Google Scholar
  18. De Lacerda, C.F., Cambraia, J., Oliva, M.A., Ruiz, H.A., Prisco, J.T.: Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. — Environ. exp. Bot. 47: 107–120, 2003.CrossRefGoogle Scholar
  19. Djibril, S., Mohamed, O.K., Diaga, D., Diégane, D., Abaye, B.F., Maurice, S., Alain, B.: Growth and development of date palm (Phoenix dactylifera L.) seedlings under drought and salinity stresses. — Afr. J. Biotechnol. 4: 968–972, 2005.Google Scholar
  20. Du, H., Wang, N., Cui, F., Li, X., Xiao, J., Xiong, L.: Characterization of a β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and ABA synthesis in rice. — Plant Physiol. 154: 1304–1318, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. — Plant J. 33: 751–763, 2003.PubMedCrossRefGoogle Scholar
  22. Epstein, E.: Silicon. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 641–664, 1999.PubMedCrossRefGoogle Scholar
  23. Fang, Y., You, J., Xie, K., Xie, W., Xiong, L.: Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. — Mol. Genet. Genomics 280: 547–563, 2008.PubMedCrossRefGoogle Scholar
  24. Fujita, Y., Fujita, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: ABA-mediated transcriptional regulation in response to osmotic stress in plants. — J. Plant Res. 124: 509–525, 2011.PubMedCrossRefGoogle Scholar
  25. Gao, J.P., Chao, D.Y., Lin, H.X.: Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. — J. Integr. Plant Biol. 49: 742–750, 2007.CrossRefGoogle Scholar
  26. Germ, M., Kreft, I., Stibilj, V., Urbanc-Berčič, O.: Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. — Plant Physiol. Biochem. 162: 145–167, 2007.Google Scholar
  27. Grieve, C.M., Grattan, S.R.: Rapid assay for determination of water-soluble quaternary-amino compounds. — Plant Soil 70: 303–307, 1983.CrossRefGoogle Scholar
  28. Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z., Xiong, L.: Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. — Plant mol. Biol. 67: 169–181, 2008.PubMedCrossRefGoogle Scholar
  29. Hussain, S.S., Kayani, M.A., Amjad, M.: Transcription factors as tools to engineer enhanced drought tolerance in plants. — Biotechnol. Progr. 27: 297–306, 2011.CrossRefGoogle Scholar
  30. Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., Panneerselvam, R.: Water deficit stress mitigation by calcium chloride in Catharanthus roseus; effects on oxidative stress, proline metabolism and indole alkaloid accumulation. — Colloids Surf. B 60: 110–116, 2007.CrossRefGoogle Scholar
  31. James, D.J., Uratsu, S., Cheng, J., Negri, P., Viss, P., Dandekar, A.M.: Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. — Plant Cell Rep. 45: 437–448, 1993.Google Scholar
  32. Khattab, H.: Metabolic and oxidative responses associated with exposure of Eruca sativa (rocket) plants to different levels of selenium. — Int. J. agr. Biol. 6: 1101–1106, 2004.Google Scholar
  33. Kraft, E., Stone, S.L., Ma, L., Su, N., Gao, Y., Lau, O.S., Deng, X.W., Callis, J.: Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. — Plant Physiol. 139: 1597–1611, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kuznetsov, V.V., Kholodova, V.P., Kuznetsov, V.V., Yagodin, B.A.: Selenium regulates the water status of plants exposed to drought. — Dokl. Akad. Nauk. Biol. 266: 268–390, 2003.Google Scholar
  35. Lenka, S.K., Katiyar, A., Chinnusamy, V., Bansal, K.C.: Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. — Plant Biotechnol J. 9: 315–327, 2011.PubMedCrossRefGoogle Scholar
  36. Liang, Y., Sun, W., Zhu, Y-G., Christie, P.: Mechanism of silicon-mediated alleviation of abiotic stresses in higher plants. — Environ. Pollut. 147: 422–428, 2007.PubMedCrossRefGoogle Scholar
  37. Liu, W., He, Y., Xiang, J., Fu, C., Yu, L., Zhang, J., Li, M.: The physiological response of suspension cell of Capparis spinosa L. to drought stress. — J. med. Plants Res. 5: 5899–5906, 2011.Google Scholar
  38. Lucas, S., Durmaz, E., Akpinar, B.A., Budak, H.: The drought response displayed by a DRE-binding protein from Triticum dicoccoides. — Plant Physiol. Biochem. 49: 346–351, 2011.PubMedCrossRefGoogle Scholar
  39. Luo, D., Niu, X., Yu, J., Yan, J., Gou, X., Lu, B.R., Liu, Y.: Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica). — Plant Cell Rep. 31: 1625–1635, 2012.PubMedCrossRefGoogle Scholar
  40. Luo, M., Liu, J., Lee, R.D., Scully, B.T., Guo, B.: Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. — J. Integr. Plant Biol. 52: 1059–1074, 2010.PubMedCrossRefGoogle Scholar
  41. Ma, J.F., Yamaji, N.: Silicon uptake and accumulation in higher plants. — Trends Plant Sci. 11: 392–397, 2006.PubMedCrossRefGoogle Scholar
  42. Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P.C, Sohrabi, Y.: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. — Aust. J. Crop Sci. 4: 580–585, 2010.Google Scholar
  43. Mahajan, S., Tuteja, N.: Cold, salinity and drought stresses: an overview. — Arch. Biochem. Biophys. 444: 139–158, 2005.PubMedCrossRefGoogle Scholar
  44. Mansour, M.M.: Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. — Plant Physiol. Biochem. 35: 767–772, 1998.CrossRefGoogle Scholar
  45. Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K., Yamaguchi-Shinozaki, K.: Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress responsive genes. — Mol. Genet. Genomics 283: 185–196, 2010.PubMedCrossRefGoogle Scholar
  46. Mingo, D.M., Theobald, J.C., Bacon, M.A., Davies, W.J., Dodd, I.C.: Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial root zone drying: enhancement of root growth. — Funct. Plant Biol. 31: 971–978, 2004.CrossRefGoogle Scholar
  47. Mitani, N., Ma, J.F.: Uptake system of silicon in different plant species. — J. exp. Bot. 56: 1255–1261, 2005.PubMedCrossRefGoogle Scholar
  48. Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: AP2/ERF family transcription factors in plant abiotic stress responses. — Biochim. biophys. Acta 1819: 86–96, 2011.PubMedCrossRefGoogle Scholar
  49. Nakashima, K., Ito, Y., Yamaguchi-Shinozaki, K.: Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. — Plant Physiol. 149: 88–95, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Nayyar, H., Walia, D.P.: Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. — Biol. Plant. 46: 275–279, 2003.CrossRefGoogle Scholar
  51. Ning, Y., Jantasuriyarat, C., Zhao, Q., Zhang, H., Chen, S., Liu, J., Liu, L., Tang, S., Park, C.H., Wang, X.: The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. — Plant Physiol. 157: 242–255, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Nonami, H., Boyer, J.S.: Primary events regulating stem growth at low water potentials. — Plant Physiol. 94: 1601–1609, 1990.CrossRefGoogle Scholar
  53. Papageorgiou, G.C., Murata, N.: The unusually strong stabilizing effect of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. — Photosynth. Res. 44: 243–252, 1995.PubMedCrossRefGoogle Scholar
  54. Park, J.J., Yi, J., Yoon, J., Cho, L.H., Ping, J., Jeong, H.J., Cho, S.K., Kim, W.T.: OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. — Plant J. 65: 194–205, 2011.PubMedCrossRefGoogle Scholar
  55. Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K., Yamaguchi-Shinozaki, K.: Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 45: 1042–1052, 2004.PubMedCrossRefGoogle Scholar
  56. Qin, F., Sakuma, Y., Tran, L.S., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., Miyazono, K.: Arabidopsis DREB2A interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. — Plant Cell 20: 1693–1707, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Qin, F., Shinozaki, K., Yamaguchi-Shinozaki, K.: Achievements and challenges in understanding plant abiotic stress responses and tolerance. — Plant Cell Physiol. 52: 1569–1582, 2011.PubMedCrossRefGoogle Scholar
  58. Rabbani, M.A., Abe, H., Maruyama, K., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Monitoring expression profiles of rice (Oryza sativa L.) genes under cold, drought and high-salinity stresses, and ABA application using both cDNA microarray and RNA gel blot analyses. — Plant Physiol. 133: 1755–1767, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Rahman, M.S., Miyake, H., Takeoka, Y.: Effects of exogenous glycine betaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). — Plant Prod. Sci. 5: 33–44, 2002.CrossRefGoogle Scholar
  60. Rathinasabapathi, B., Gage, D.A., Mackill, D.J., Hanson, A.D.: Cultivated and wild rices do not accumulate glycine betaine due to deficiencies in two biosynthetic steps. — Crop Sci. 33: 534–538, 1993.CrossRefGoogle Scholar
  61. Rauf, S., Sadaqat, H.A.: Effect of osmotic adjustment on root length and dry matter partitioning in sunflower (Helianthus annuus L.) under drought stress. — Acta agr. scand. Sect. B Soil Plant Sci. 58: 252–260, 2008.Google Scholar
  62. Savant, N.K., Snyder, G.H., Datnoff, L.E.: Silicon management and sustainable rice production. — Adv.Agron. 58: 151–199. 1997.CrossRefGoogle Scholar
  63. Shinozaki, K., Yamaguchi-Shinozaki, K.: Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signaling pathways. — Curr. Opin. Plant Biol. 3: 217–223, 2000.PubMedCrossRefGoogle Scholar
  64. Shinozaki, K., Yamaguchi-Shinozaki, K., Seki, M.: Regulatory network of gene expression in the drought and cold stress responses. — Curr. Opin. Plant Biol. 6: 410–417, 2003.PubMedCrossRefGoogle Scholar
  65. Shirasawa, K., Takabe, T., Takabe, T., Kishitani, K.: Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. — Ann. Bot. 98: 565–571, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Snedecor, G.W., Cochran, W.G.: Statistical Methods. 7th Ed. — Iowa State University Press, Ames 1980.Google Scholar
  67. Song, S.Y., Chen, Y., Chen, J., Dai, X.Y., Zhang, W.H.: Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. — Planta 234: 331–345, 2011.PubMedCrossRefGoogle Scholar
  68. Spollen, W.G., Sharp, R.E., Saab, I.N., Wu, Y.: Regulation of cell expansion in roots and shoots at low water potentials. — In: Smith, J.A.C., Griffiths, H. (ed.): Water Deficits: Plant Responses from Cell to Community. Pp. 37–52. BIOS Scientific Publishers, Oxford 1993.Google Scholar
  69. Steel, R.G.D., Torrie, J.H.: Principles and Procedures of Statistics. 2nd Ed. — McGraw Hill, New York 1980.Google Scholar
  70. Stone, S.L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., Callis, J.: Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. — Plant Physiol. 137: 13–30, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Szabados, L., Savoure, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 89–97, 2010.PubMedCrossRefGoogle Scholar
  72. Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K.: The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. — Mol. Genet. Genomics 284: 173–183, 2010.PubMedCrossRefGoogle Scholar
  73. Talame, V., Ozturk, N.Z., Bohnert, H.J., Tuberosa, R.: Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. — J. exp. Bot. 58: 229–240, 2007.PubMedCrossRefGoogle Scholar
  74. Terry, N., Zayed, A.M., De Souza, M.P., Tarun, A.S.: Selenium in higher plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 401–432, 2000.PubMedCrossRefGoogle Scholar
  75. Tran, L.S.P., Nishiyama, R., Yamaguchi-Shinozaki, K., Shinozaki, K.: Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. — GM Crops 1: 32–39, 2010.PubMedCrossRefGoogle Scholar
  76. Trovato, M., Matioli, R., Costantino, P.: Multipe roles of proline in plant stress tolerance and development. — Rendiconti Lincei 19: 325–346, 2008.CrossRefGoogle Scholar
  77. Tunnacliffe, A., Wise, M.J.: The continuing conundrum of the LEA proteins. — Naturwissenschaften 94: 791–812, 2007.PubMedCrossRefGoogle Scholar
  78. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Engineering drought tolerance in plants: discovering and tailoring genes unlock the future. — Curr. Opin. Biotechnol. 17: 113–122, 2006.PubMedCrossRefGoogle Scholar
  79. Wang, C., Zhang, I., Yuan, M., Ge, Y., Liu, Y., Fan, J., Cui, Z., Tong, S., Zhang, S.: The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis. — Plant Biol. 12: 70–78, 2010.PubMedCrossRefGoogle Scholar
  80. Wang, Q., Guan, Y., Yu, Y., Chen, H., Chen, F., Chu, C.: Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. — Plant mol. Biol. 67: 589–602, 2008.PubMedCrossRefGoogle Scholar
  81. Xiong, L., Schumaker, K.S., Zhu, J.K.: Cell signaling during cold, drought, and salt stress. — Plant Cell 14: S165–S183, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Xoconostle-Cázares, B., Ramírez-Ortega, F.A., Flores-Elenes, L., Ruiz-Medrano, R.: Drought tolerance in crop plants. — Amer. J. Plant Physiol. 5: 241–256, 2010.CrossRefGoogle Scholar
  83. Yamaguchi-Shinozaki, K., Shinozaki, K.: Organization of cisacting regulatory elements in osmotic and cold-stressresponsive promoters. — Trends. Plant Sci. 10: 88–94, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • H. I. Khattab
    • 1
    Email author
  • M. A. Emam
    • 2
  • M. M. Emam
    • 1
  • N. M. Helal
    • 1
  • M. R. Mohamed
    • 2
  1. 1.Department of Botany, Faculty of ScienceAin Shams University, AbbassiyaCairoEgypt
  2. 2.Department of Biochemistry, Faculty of ScienceAin Shams University, AbbassiyaCairoEgypt

Personalised recommendations