Advertisement

Biologia Plantarum

, Volume 58, Issue 1, pp 39–46 | Cite as

Antigibberellin-induced reduction of internode length favors in vitro flowering and seed-set in different pea genotypes

  • F. M. Ribalta
  • J. S. Croser
  • W. Erskine
  • P. M. Finnegan
  • M. M. Lulsdorf
  • S. J. OchattEmail author
Original Papers

Abstract

In vitro flowering protocols were developed for a limited number of early flowering pea (Pisum sativum L.) cultivars. This work was undertaken to understand the mechanisms regulating in vitro flowering and seed-set across a range of pea genotypes. Its final goal is to accelerate the generation cycle for faster breeding novel genotypes. We studied the effects of in vivo and in vitro applications of the antigibberellin Flurprimidol together with radiation of different spectral compositions on intact plants, plants with the meristem removed, or excised shoot tip explants. Based on our results, we present a simple and reliable system to reduce generation time in vitro across a range of pea genotypes, including mid and late flowering types. With this protocol, more than five generations per year can be obtained with mid to late flowering genotypes and over six generations per year for early to mid flowering genotypes.

Additional key words

acceleration of development Flurprimidol gibberellins spectral composition of radiation 

Abbreviations

GA

gibberellic acid

MS

Murashige and Skoog

SSD

single seed descent

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asawaphan, P., Mangkita, W., Kachonpadungkitti, Y., Matsuyama, S., Satake, T., Hisajima, S.: Efficient flower induction from peanut (Arachis hypogaea L.) seedling in vitro. — Sabrao J. Breed. Genet. 37: 131–140, 2005.Google Scholar
  2. Ausín, I., Alonso-Blanco, C., Martinez-Zapater, J.M.: Environmental regulation of flowering. — Int. J. dev. Biol. 49: 689–705, 2005.PubMedCrossRefGoogle Scholar
  3. Burton, A.L., Pennisi, S.V., Van Iersel, M.W.: Morphology and postharvest performance of Geogenanthus undatus C. Koch & Linden ‘Inca’ after application of ancymidol or flurprimidol. — HortScience 42: 544–549, 2007.Google Scholar
  4. Cerdan, P.D., Chory, J.: Regulation of flowering time by light quality. — Nature 423: 881–885, 2003.PubMedCrossRefGoogle Scholar
  5. Ceunen, S., Geuns, J.M.C.: Glucose, sucrose, and steviol glycoside accumulation in Stevia rebaudiana grown under different photoperiods. — Biol. Plant. 57: 390–394, 2013.CrossRefGoogle Scholar
  6. Chase, S.S.: Production of homozygous diploids of maize from monoploids. — Agron. J. 44: 263–267, 1952.CrossRefGoogle Scholar
  7. Chengalrayan, K., Mhaske, V.B., Hazra, S.: In vitro regulation of morphogenesis in peanut (Arachis hypogaea L.). — Plant Sci. 110: 259–268, 1995.CrossRefGoogle Scholar
  8. Cleland, R.E.: Nature, ocurrence and functioning of plant hormones. — In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 3–22. Elsevier, Amsterdam 1999.CrossRefGoogle Scholar
  9. Croser, J.S., Lulsdorf, M.M., Davies, P.A., Clarke, H.J., Bayliss, K.L., Mallikarjuna, N., Siddique, K.H.M.: Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. — Crit. Rev. Plant Sci. 25: 139–157, 2006.CrossRefGoogle Scholar
  10. Cummings, I.G., Reid, J.B., Koutoulis, A.: Red to far-red ratio correction in plant growth chambers — growth responses and influence of thermal load on garden pea. — Physiol. Plant. 131: 171–179, 2007.PubMedGoogle Scholar
  11. Figueira, A., Janick, J.: Optimizing carbon dioxide and light levels during in vitro culture of Theobroma cacao. — J. amer. Soc. hort. Sci. 119: 865–871, 1994.Google Scholar
  12. Franklin, G., Pius, P.K., Ignacimuthu, S.: Factors affecting in vitro flowering and fruiting of green pea (Pisum sativum L.). — Euphytica 115: 65–74, 2000.CrossRefGoogle Scholar
  13. Fujioka, T., Fujita, M., Miyamoto, Y.: In vitro flowering and pod setting of non-symbiotically germinated pea. — J. jap. Soc. hort. Sci. 68: 117–123, 1999.CrossRefGoogle Scholar
  14. Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells. — Exp. Cell Res. 50: 151–158, 1968.PubMedCrossRefGoogle Scholar
  15. George, E.F., Hall, M.A., De Klerk, G.J.: The components of plant tissue culture media II: Organic additions, osmotic and pH effects. — In: George, E.F., Hall, M.A., De Klerk, G.J. (ed.): Plant Propagation by Tissue Culture. 3rd Ed. Pp. 115–173. Springer, Berlin 2009.Google Scholar
  16. Goulden, C.H.: Problems in plant selection. — Burnett, R.C. (ed.): Proceedings of the 7th International Genetic Congress. Pp. 132–133, Cambridge University Press, Cambridge 1939.Google Scholar
  17. Haddad, N.I., Muehlbauer, F.J.: Comparison of random bulk population and single-seed-descent methods for lentil breeding. — Euphytica 30: 643–651, 1981.CrossRefGoogle Scholar
  18. Hamid, M.M., Williams, R.R.: Effect of different types and concentrations of plant growth retardants on Sturt’s desert pea (Swainsona formosa). — Scientia Hort. 71: 79–85, 1997.CrossRefGoogle Scholar
  19. Hedden, P.: Recent advances in gibberellin biosynthesis. — J. exp. Bot. 50: 553–563, 1999.Google Scholar
  20. Ingram, T.J., Reid, J.B., MacMillan, J.: The quantitative relationship between gibberellin A1 and internode elongation in Pisum sativum L. — Planta 168: 414–420, 1986.PubMedCrossRefGoogle Scholar
  21. Ingram, T.J., Reid, J.B., Potts, W.C., Murfet, C.: Internode length in Pisum. IV. The effect of the Le gene on gibberellin metabolism. — Physiol. Plant. 59: 607–616, 1983.CrossRefGoogle Scholar
  22. Jackson, M.B., Abbot, A.J., Belcher, A.R., Hall, K.C., Butler, R., Cameron, J.: Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. — Ann. Bot. 67: 229–237, 1991.Google Scholar
  23. Kasha, K.J., Maluszynski, M.: Production of doubled haploids in crop plants. An introduction. — In: Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I. (ed.): Doubled Haploid Production in Crop Plants. A Manual. Pp. 1–4. Kluwer Academic Publishers, Dordrecht 2003.CrossRefGoogle Scholar
  24. Kozai, T., Fujiwara, K., Hayashi, M., Aitken-Christie, J.: The in vitro environment and its control in micropropagation. — In: Kurata, K. and Kozai, T. (ed.): Transplant Production Systems. Pp. 247–282. Kluwer Academic Publishers, Dordrecht 1992.CrossRefGoogle Scholar
  25. Lentini, Z., Mussell, H., Mutschler, M.A., Earle, E.D.: Ethylene generation and reversal of ethylene effects during development in vitro of rapid-cycling Brassica campestris L. — Plant Sci. 54: 75–81, 1988.CrossRefGoogle Scholar
  26. Majada, J.P., Fal, M.A., Sanchez-Tames, R.: The effect of ventilation rate on proliferation and hyperhydricity of Dianthus caryophyllus L. — In Vitro cell. dev. Biol. Plant 33: 62–69, 1997.CrossRefGoogle Scholar
  27. Martin, R.J., Wilcox, J.R., Laviolette, F.A.: Variability in soybean progenies developed by single seed descent at two plant populations. — Crop Sci. 18: 359–362, 1978.CrossRefGoogle Scholar
  28. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  29. Narasimhulu, S.B., Reddy, G.M.: In vitro flowering and pod formation from cotyledons of groundnut (Arachis hypogaea L.). — Theor. appl. Genet. 69: 87–89, 1984.PubMedCrossRefGoogle Scholar
  30. Nelissen, H., Rymen, B., Jikumaru, Y., Demuynck, K., Van Lijsebettens, M., Kamiya, Y., Inze, D., Beemster, G.T.S.: A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. — Curr. Biol. 22: 1183–1187, 2012.PubMedCrossRefGoogle Scholar
  31. Nelson, M.N., Berger, J.D., Erskine, W.: Flowering time control in annual legumes: prospects in a changing global climate. — CAB Rev. (Perspect. agr. vet. Sci. Nutr. natur. Resour.) 5: 49–62, 2010.Google Scholar
  32. Ochatt, S., Pech, C., Grewal, R., Conreux, C., Lulsdorf, M., Jacas, L.: Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). — J. Plant Physiol. 166: 1314–1328, 2009.PubMedCrossRefGoogle Scholar
  33. Ochatt, S.J., Pontecaille, C., Rancillac, M.: The growth regulators used for bud regeneration and shoot rooting affect the competence for flowering and seed set in regenerated plants of protein peas. — In Vitro cell. dev. Biol. Plant 36: 188–193, 2000.CrossRefGoogle Scholar
  34. Ochatt, S.J., Sangwan, R.S.: In vitro shortening of generation time in Arabidopsis thaliana. — Plant Cell Tissue Organ Cult. 93: 133–137, 2008.CrossRefGoogle Scholar
  35. Ochatt, S.J., Sangwan, R.S.: In vitro flowering and seed set: acceleration of generation cycles. — In: Davey, M.R., Anthony, P. (ed.): Plant Cell Culture: Essential Methods. Pp. 97–110. John Wiley & Sons, Chichester 2010.CrossRefGoogle Scholar
  36. Ochatt, S.J., Sangwan, R.S., Marget, P., Ndong, Y.A., Rancillac, M., Perney, P.: New approaches towards the shortening of generation cycles for faster breeding of protein legumes. — Plant Breed. 121: 436–440, 2002.CrossRefGoogle Scholar
  37. Pobudkiewicz, A., Treder, J.: Effects of flurprimidol and daminozide on growth and flowering of oriental lily ‘Mona Lisa’. — Scientia Hortic. 110: 328–333, 2006.CrossRefGoogle Scholar
  38. Potts, W.C., Reid, J.B., Murfet, C.: Internode length in Pisum. I. The effect of the Le/le gene difference on endogenous gibberellin-like substances. — Physiol. Plant. 55: 323–328, 1982.CrossRefGoogle Scholar
  39. Potts, W.C., Reid, J.B., Murfet, I.C.: Internode length in Pisum. Gibberellins and the slender phenotype. — Physiol. Plant. 63: 357–364, 1985.CrossRefGoogle Scholar
  40. Rademacher, W.: Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 501–531, 2000.PubMedCrossRefGoogle Scholar
  41. Reid, J.B., Murfet, I.C.: Flowering in Pisum: the effect of light quality on the genotype If e Sn Hr. — J. exp. Bot. 28: 1357–1364, 1977.CrossRefGoogle Scholar
  42. Reid, J.B., Murfet, I.C., Potts, W.C.: Internode length in Pisum. Additional information on the relationship and action of loci Le, La, Cry, Na and Lm. — J. exp. Bot. 34: 349–364, 1983.CrossRefGoogle Scholar
  43. Reid, J.B., Murfet, I.C., Singer, S.R., Weller, J.L., Taylor, S.A.: Physiological-genetics of flowering in Pisum. — Semin. Cell Dev. Biol. 7: 455–463, 1996.CrossRefGoogle Scholar
  44. Ross, J.J., Reid, J.B., Gaskin, P., MacMillan, J.: Internode length in Pisum. Estimation of GA1 levels in genotypes Le, le and le d. — Physiol. Plant. 76: 173–176, 1989.CrossRefGoogle Scholar
  45. Runkle, E.S., Heins, R.D.: Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. — J. amer. Soc. hort. Sci. 126: 275–282, 2001.Google Scholar
  46. Smith, V.A.: Gibberellin A1 biosynthesis in Pisum sativum L. II. Biological and biochemical consequences of the le mutation. — Plant Physiol. 99: 372–377, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Smith, V.A., Knatt, C.J., Gaskin, P., Reid, J.B.: The distribution of gibberellins in vegetative tissues of Pisum sativum L. I. Biological and biochemical consequences of the le mutation. — Plant Physiol. 99: 368–371, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Soller, M., Beckmann, J.S.: Marker-based mapping of quantitative trait loci using replicated progenies. — Theor. appl. Genet. 80: 205–208, 1990.PubMedCrossRefGoogle Scholar
  49. Vince-Prue, D.: Dayligth and photoperiodism. — In: Smith, H. ed.: Plants and the Daylight Spectrum. Pp. 223–242. Academic Press, London 1981.Google Scholar
  50. Walker, P.N., Heuser, C.W., Heinemann, P.H.: Micropropagation: studies of gaseous environments. — Acta hort. 230: 145–151, 1988.Google Scholar
  51. Wang, W.Y., Xu, J., Liu, X.J., Yu, Y., Ge, Q.: Cadmium induces early flowering in Arabidopsis. — Biol. Plant. 56: 117–120, 2012.CrossRefGoogle Scholar
  52. Weller, J.L., Reid, J.B., Taylor, S.A., Murfet, C.: The genetic control of flowering in pea. — Trends Plant Sci. 2: 412–418, 1997.CrossRefGoogle Scholar
  53. Whitman, C.M., Heins, R.D., Cameron, A.C., Carlson, W.H.: Lamp type and irradiance level for daylight extensions influence flowering of Campanula carpatica ‘Blue clips’, Coreopsis grandiflora ‘Early Sunrise’, and Coreopsis verticillata ‘Moonbeam’ — J. amer. Soc. hort. Sci. 123: 802–807, 1998.Google Scholar
  54. Zhang, T.: In vitro flowering of Perilla frutescens. — In Vitro cell. dev. Biol. Plant 43: 91–94, 2007.CrossRefGoogle Scholar
  55. Zhou, B., Li, N., Zhang, Z., Huang, X., Chen, H., Hu, Z., Pang, X., Liu, W., Lu, Y.: Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis. — Biol. Plant. 56: 321–329, 2012.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • F. M. Ribalta
    • 1
    • 2
  • J. S. Croser
    • 1
  • W. Erskine
    • 1
  • P. M. Finnegan
    • 2
  • M. M. Lulsdorf
    • 3
  • S. J. Ochatt
    • 4
    Email author
  1. 1.Centre for Legumes in Mediterranean Agriculture, Faculty of Natural and Agricultural SciencesUniversity of Western AustraliaCrawleyAustralia
  2. 2.School of Plant Biology, Faculty of Natural and Agricultural SciencesUniversity of Western AustraliaCrawleyAustralia
  3. 3.Crop Development CentreUniversity of SaskatchewanSaskatoonCanada
  4. 4.Institut National de la Recherche AgronomiqueUMRLEG, PCMV, INRA C.R de DijonDijon CedexFrance

Personalised recommendations