Biologia Plantarum

, Volume 57, Issue 4, pp 675–683 | Cite as

Peroxiredoxins are involved in two independent signalling pathways in the abiotic stress protection in Vitis vinifera

  • P. Vidigal
  • R. Carvalho
  • S. Amâncio
  • L. Carvalho
Original Papers


Peroxiredoxins (Prxs) play major roles in preventing oxidative damage and their function is consistent with the presence of Prx isoforms in most, if not all, cellular compartments and their expression is dependent on environmental conditions. The aim of this study was to identify and characterize genes encoding Prxs in Vitis vinifera. Quantitative real time polymerase chain reaction (qRT PCR) was used to determine their response to irradiance, heat, and water stress. We identified seven vvprx genes, two of which were especially responsive to water stress, followed by heat stress, but no major changes were observed after high irradiance. The vvprxIIF targeted to mitochondria was the most responsive to water stress and it might be involved in drought tolerance through H2O2 signalling. The vvprxII-2, a putative PrxII, is targeted to the chloroplasts and was the most responsive to heat stress. It might be related with abscisic acid-dependent thermotolerance. Additional key words: abscisic acid, antioxidants, grapevine, heat stress, photosynthesis, qRT PCR, water stress.


Water Stress Heat Stress High Irradiance Vitis Vinifera Peroxide Detoxification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



abscisic acid


ascorbate peroxidase






dihydroascorbate reductase


variable to maximum chlorophyll fluorescence ratio


glutathione reductase


photosynthetic photon flux density




quantitative real time polymerase chain reaction


reactive oxygen species


superoxide dismutase


water stress


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aragón, C., Carvalho, L.C., González, J., Escalona, M., Amâncio, S.: Sugarcane (Saccharum sp. hybrid) propagated in headspace renovating systems shows autotrophic characteristics and develops improved anti-oxidative response. — Trop. Plant Biol. 2: 38–50, 2008.CrossRefGoogle Scholar
  2. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.PubMedCrossRefGoogle Scholar
  3. Baier, M., Dietz, K.J.: Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis. — Plant Physiol. 119: 1407–1414, 1999.PubMedCrossRefGoogle Scholar
  4. Baier, M., Noctor, G., Foyer, C.H., Dietz, K.J.: Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. — Plant Physiol. 124: 823–832, 2000.PubMedCrossRefGoogle Scholar
  5. Baier, M., Stroher, E., Dietz, K.J.: The acceptor availability at photosystem I and ABA control nuclear expression of 2-Cys peroxiredoxin-A in Arabidopsis thaliana. — Plant Cell Physiol. 45: 997–1006, 2004.PubMedCrossRefGoogle Scholar
  6. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: GenBank. — Nucl. Acids Res. 39(Suppl.): D32–D37, 2011.PubMedCrossRefGoogle Scholar
  7. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  8. Broin, M., Cuine, S., Eymery, F., Rey, P.: The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. — Plant Cell 14: 1417–1432, 2002.PubMedCrossRefGoogle Scholar
  9. Carvalho, L.C., Vilela, B.J., Mullineaux, P.M., Amâncio, S.: Comparative transcriptomic profiling of Vitis vinifera under high light using a custom-made array and the Affymetrix gene chip. — Mol. Plant 4: 1038–1051, 2011.PubMedCrossRefGoogle Scholar
  10. Carvalho, L.C., Vilela, B.J., Vidigal, P., Mullineaux, P.M., Amâncio, S.: Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro. — Int. J. Plant Sci. 167: 759–770, 2006.CrossRefGoogle Scholar
  11. Coito, J.L., Rocheta, M., Carvalho, L.C., Amâncio, S.: Microarray-based uncovering reference genes for quantitative real time PCR in grapevine under abiotic stress. — BMC Res. Notes 5: 220, 2012.PubMedCrossRefGoogle Scholar
  12. Dietz, K.J.: The dual function of plant peroxiredoxins in antioxidant defence and redox signaling. — Subcell. Biochem. 44: 267–294, 2007.PubMedCrossRefGoogle Scholar
  13. Dietz, K.J.: Peroxiredoxins in plants and cyanobacteria. — Antioxid. Redox Signal 15: 1129–1159, 2011.PubMedCrossRefGoogle Scholar
  14. Dietz, K.J., Horling, F., Konig, J., Baier, M.: The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. — J. exp. Bot. 53: 1321–1329, 2002.PubMedCrossRefGoogle Scholar
  15. Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., De Miranda, S.M., Baier, M., Finkemeier, I.: The function of peroxiredoxins in plant organelle redox metabolism. — J. exp. Bot. 57: 1697–1709, 2006.PubMedCrossRefGoogle Scholar
  16. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution 39: 783–791, 1985.CrossRefGoogle Scholar
  17. Gama, F., Keech, O., Eymery, F.O., Finkemeier, I., Gelhaye, E., Gardestrom, P., Dietz, K.J., Rey, P., Jacquot, J.P., Rouhier, N.: The mitochondrial type II peroxiredoxin from poplar. — Physiol. Plant. 129: 196–206, 2007.CrossRefGoogle Scholar
  18. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A.: Protein identification and analysis tools on the ExPASy server. — In: Walker, J.M. (ed.): The Proteomics Protocols Handbook. Pp. 571–607. Humana Press, Totowa 2005.CrossRefGoogle Scholar
  19. Geuna, F., Hartings, H., Scienza, A.: A new method for rapid extraction of high quality RNA from recalcitrant tissues of grapevine. — Plant mol. Biol. Rep. 16: 61–67, 1998.CrossRefGoogle Scholar
  20. Haslekas, C., Stacy, R.A., Nygaard, V., Culianez-Macia, F.A., Aalen, R.B.: The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy. — Plant mol. Biol. 36: 833–845, 1998.PubMedCrossRefGoogle Scholar
  21. Haslekas, C., Viken, M.K., Grini, P.E., Nygaard, V., Nordgard, S.H., Meza, T.J., Aalen, R.B.: Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress. — Plant Physiol. 133: 1148–1157: 2003.PubMedCrossRefGoogle Scholar
  22. Horling, F., Konig, J., Dietz, K.J.: Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins. — Plant Physiol. Biochem. 40: 491–499, 2002.CrossRefGoogle Scholar
  23. Horling, F., Lamkemeyer, P., Konig, J., Finkemeier, I., Kandlbinder, A., Baier, M., Dietz, K.J.: Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. — Plant Physiol. 131: 317–325, 2003.PubMedCrossRefGoogle Scholar
  24. Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K.: WoLFPSORT: protein localization predictor. — Nucl. Acids Res. 35(Suppl.): W585–W587, 2007.PubMedCrossRefGoogle Scholar
  25. Hossain, M.A., Fujita, M.: Regulatory role of components of ascorbate-glutathione (AsA-GSH) pathway in plant tolerance to oxidative stress. — In: Anjum, N.A., Umar, S., Ahmed, A. (ed.): Oxidative Stress in Plants: Causes, Consequences and Tolerance. Pp. 81–147. IK International Publishing House, New Delhi 2011.Google Scholar
  26. Huang, L., McCluskey, M.P., Ni, H., LaRossa, R.A.: Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. — J. Bacteriol. 184: 6845–6858, 2002.PubMedCrossRefGoogle Scholar
  27. Jing, L.W., Chen, S.H., Guo, X.L., Zhang, H., Zhao, Y.X.: Overexpression of a chloroplast-located peroxiredoxin Q gene, SsPrxQ, increases the salt and low-temperature tolerance of Arabidopsis. — J. Integr. Plant Biol. 48: 1244–1249, 2006.CrossRefGoogle Scholar
  28. Konig, J., Baier, M., Horling, F., Kahmann, U., Harris, G., Schurmann, P., Dietz, K.J.: The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. — Proc. nat. Acad. Sci. USA 99: 5738–5743, 2002.PubMedCrossRefGoogle Scholar
  29. Lamkemeyer, P., Laxa, M., Collin, V., Li, W., Finkemeier, I., Schottler, M.A., Holtkamp, V., Tognetti, V.B., Issakidis-Bourguet, E., Kandlbinder, A., Weis, E., Miginiac-Maslow, M., Dietz, K.J.: Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. — Plant J. 45: 968–981, 2006.PubMedCrossRefGoogle Scholar
  30. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. — Bioinformatics 23: 2947–2948, 2007.PubMedCrossRefGoogle Scholar
  31. Li, H., Singh, A.K., McIntyre, L.M., Sherman, L.A.: Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803. — J. Bacteriol. 186: 3331–3345, 2004.PubMedCrossRefGoogle Scholar
  32. Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Jackson, J.D., Ke, Z., Lanczycki, C.J., Lu, F., Marchler, G.H., Mullokandov, M., Omelchenko, M.V., Robertson, C.L., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D., Zhang, N., Zheng, C., Bryant, S.H.: CDD: a conserved domain database for the functional annotation of proteins. — Nucl. Acids Res. 39(Suppl.): D225–D229, 2011.PubMedCrossRefGoogle Scholar
  33. Mittler, R.: Oxidative stress, antioxidants, and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.PubMedCrossRefGoogle Scholar
  34. Mowla, S.B., Thomson, J.A., Farrant, J.M., Mundree, S.G.: A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. — Planta 215: 716–726, 2002.PubMedCrossRefGoogle Scholar
  35. Parsonage, D., Karplus, P.A., Poole, L.B.: Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. — Proc. nat. Acad. Sci. USA 105: 8209–8214, 2008.PubMedCrossRefGoogle Scholar
  36. Perez-Perez, M.E., Mata-Cabana, A., Sanchez-Riego, A.M., Lindahl, M., Florencio, F.J.: A comprehensive analysis of the peroxiredoxin reduction system in the cyanobacterium Synechocystis sp. strain PCC 6803 reveals that all five peroxiredoxins are thioredoxin dependent. — J. Bacteriol. 191: 7477–7489, 2009.PubMedCrossRefGoogle Scholar
  37. Petersson, U.A., Kieselbach, T., Garcia-Cerdan, J.G., Schroder, W.P.: The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. — FEBS Lett. 580: 6055–6061, 2006.PubMedCrossRefGoogle Scholar
  38. Pulido, P., Cazalis, R., Cejudo, F.J.: An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. — Plant J. 57: 132–145, 2009.PubMedCrossRefGoogle Scholar
  39. Pulido, P., Spinola, M.C., Kirchsteiger, K., Guinea, M., Pascual, M.B., Sahrawy, M., Sandalio, L.M., Dietz, K.J., Gonzalez, M., Cejudo, F.J.: Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. — J. exp. Bot. 61: 4043–4054, 2010.PubMedCrossRefGoogle Scholar
  40. Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.S., Yang, K.S., Woo, H.A.: Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. — Curr. Opin. Cell Biol. 17: 183–189, 2005.PubMedCrossRefGoogle Scholar
  41. Rhue R.D., Grogan C.O., Stockmeyer E.W., Evert H.L.: Genetic control of aluminium tolerance in corn. — Crop Sci. 18: 1063–1067, 1978.CrossRefGoogle Scholar
  42. Romero-Puertas, M.C., Laxa, M., Matte, A., Zaninotto, F., Finkemeier, I., Jones, A.M., Perazzolli, M., Vandelle, E., Dietz, K.J., Delledonne, M.: S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. — Plant Cell 19: 4120–4130, 2007.PubMedCrossRefGoogle Scholar
  43. Rouhier, N., Jacquot, J.P.: The plant multigenic family of thiol peroxidases. — Free Rad. Biol. Med. 38: 1413–1421, 2005.PubMedCrossRefGoogle Scholar
  44. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. — Mol. Biol. Evol. 4: 406–425, 1987.PubMedGoogle Scholar
  45. Schwarz, R., Dayhoff, M.: Matrices for detecting distant relationships. — In: Dayhoff, M. (ed.): Atlas of Protein sequences. Pp. 353–358. Nat. Biomed. Res. Found., Washington 1979.Google Scholar
  46. Song, Y., Lin, Y., Tong, S., Hou, H.: Molecular cloning, promoter analysis, and expression profile of VvERF3b gene in Vitis vinifera. — Biol. Plant. 56: 31–36, 2012.CrossRefGoogle Scholar
  47. Sweetlove, L.J., Heazlewood, J.L., Herald, V., Holtzapffel, R., Day, D.A., Leaver, C.J., Millar, A.H.: The impact of oxidative stress on Arabidopsis mitochondria. — Plant J. 32: 891–904, 2002.PubMedCrossRefGoogle Scholar
  48. Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. — Mol. Biol. Evol. 24: 1596–1599, 2007.PubMedCrossRefGoogle Scholar
  49. Tripathi, B.N., Bhatt, I., Dietz, K.J.: Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. — Protoplasma 235: 3–15, 2009.PubMedCrossRefGoogle Scholar
  50. Upadhyay, A., Upadhyay, A.K., Bhirangi, R.A.: Expression of Na+/H+ antiporter gene in response to water and salinity stress in grapevine rootstocks. — Biol. Plant. 56: 762–766, 2012.CrossRefGoogle Scholar
  51. Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidlitz, H.K., Zabeau, M., Van Montagu, M., Inzé, D., Van Breusegem, F.: Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. — Plant J. 39: 45–58, 2004.PubMedCrossRefGoogle Scholar
  52. Vilela, B.J., Carvalho, L.C., Ferreira, J., Amâncio, S.: Imaging of photooxidative stress symptoms and stomatal functioning in Vitis vinifera L. transferred from in vitro to ex vitro under increased light. — Plant Cell Rep. 26: 2149–2157, 2007.PubMedCrossRefGoogle Scholar
  53. Wang, L.J., Huang, W.D., Liu, Y.P., Zhan, J.C.: Changes in salicylic and abscisic acid contents during heat treatment and their effect on thermotolerance of grape plants. — Russ. J. Plant Physiol. 52: 516–520, 2005.CrossRefGoogle Scholar
  54. Wood Z.A., Schroder E., Harris J.R., Poole L.B.: Structure, mechanism and regulation of peroxiredoxins. — Trends Biochem. Sci. 28: 32–40, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • P. Vidigal
    • 1
  • R. Carvalho
    • 1
  • S. Amâncio
    • 1
  • L. Carvalho
    • 1
  1. 1.DRAT/CBAA, Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations