Biologia Plantarum

, Volume 57, Issue 4, pp 769–772 | Cite as

Effect of irradiance during acclimatization on content of proline and phytohormones in micropropagated Ulmus minor

  • M. C. Dias
  • G. Pinto
  • C. Guerra
  • C. Jesus
  • J. Amaral
  • C. Santos
Brief Communication


This study aimed to investigate the effects of irradiance on plant growth and content of proline and phytohormones during ex vitro acclimatization of micropropagated Ulmus minor plants. In vitro rooted plants were acclimatized to ex vitro conditions in a climate chamber with two irradiances, 200 μmol m−2 s−1 (high irradiance, HI) and 100 μmol m−2 s−1 (low irradiance, LI) for 40 d. Immediately after the ex vitro transfer, the plants experienced a water deficit [wilting leaves with the reduced relative water content (RWC)], but following the experiment, the recovery of the RWC was more pronounced in the HI treatment. Also, the content of proline, ABA, and JA-Ile were higher in HI treatment. Growth analyses revealed that HI improved growth and biomass production.

Additional key words

abscisic acid growth analysis jasmonic acid net assimilation rate relative water content 



abscisic acid


dry mass


fresh mass


high irradiance


jasmonic acid




leaf area ratio


leaf dry mass


low irradiance


net assimilation rate


relative growth rate


relative water content


salicylic acid


specific leaf area


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashraf, M., Foolad, M.R.: Roles of glycine betaine and praline in improving plant abiotic stress resistance. — Environ. exp. Bot. 59: 206–216, 2007.CrossRefGoogle Scholar
  2. Carvalho, L.C., Amâncio, S.: Effect of ex vitro conditions on growth and acquisition of autotrophic behaviour during the acclimatisation of chestnut regenerated in vitro. — Sci. Hort. 95: 151–164. 2002.CrossRefGoogle Scholar
  3. Corcuera, L., Gil-Pelegrin, E., Notivol, E.: Aridity promotes differences in proline and phytohormone levels in Pinus pinaster populations from contrasting environments. — Trees 26: 799–808, 2012.CrossRefGoogle Scholar
  4. Dias, M.C., Pinto, G., Correia, C., Moutinho-Pereira, J., Silva, S., Santos, C.: Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. — Biol. Plant. 57: 33–40, 2013.CrossRefGoogle Scholar
  5. Dias, M.C., Pinto, G., Santos, C.: Acclimatization of micropropagated plantlets induces an antioxidative burst: a case study with Ulmus minor Mill. — Photosynthetica 49: 259–266, 2011.CrossRefGoogle Scholar
  6. Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J.V., Gómez-Cadenas, A.: Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography electrospray tandem mass spectrometry. — J. Agr. Food Chem. 53: 8437–8442, 2005.CrossRefGoogle Scholar
  7. Estrada-Luna, A.A., Davies, F.T., Egilla, J.N.: Physiological changes and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. — Plant Cell Tissue Organ Cult. 66: 17–24, 2011.CrossRefGoogle Scholar
  8. Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., Wasternack, C., Solano, R.: (+)-7-iso-jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. — Nature Chem. Biol. 5: 344–350, 2009.CrossRefGoogle Scholar
  9. Hamid, H.A., Khaedr, A., Mohammad, A.A., Amal, A. A., Paul Quick W., Abogadallah, M.: Proline induces the expression of salt-stress-responsive proteins and may improve the adoption of Pancratium maritimum L. to salt stress. — J. exp. Bot. 54: 2553–2562, 2003.CrossRefGoogle Scholar
  10. Munné-Bosch, S., Falara, V., Pateraki, I., López-Carbonell, M., Cela, J., Kanellis, A.K.: Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. — J. Plant Physiol. 166: 136–145, 2008.PubMedCrossRefGoogle Scholar
  11. Osório, M.L., Osório, J., Romano, A.: Chlorophyll fluorescence in micropropagated Rhododendron ponticum subsp. baeticum plants in response to different irradiances. — Biol. Plant. 54: 415–422, 2010.CrossRefGoogle Scholar
  12. Poorter, H., Remkes, C.: Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. — Oecologia 83: 553–559, 1990.CrossRefGoogle Scholar
  13. Pospíšilová, J., Haisel, D., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š., Procházková, D., Šrámek, F.: Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. — Plant Cell Tissue Organ Cult. 61:125–133, 2000.CrossRefGoogle Scholar
  14. Pospíšílová, J., Synková, H., Haisel, D., Baťková, P.: Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. — Biol. Plant. 53: 11–20, 2009.CrossRefGoogle Scholar
  15. Pospíšilová, J., Tichá, I., Kadleček, P., Haisel, D., Plzáková, Š.: Acclimatization of micropropagated plants to ex vitro conditions. — Biol. Plant. 42: 481–497, 1999.CrossRefGoogle Scholar
  16. Senevirathna, A.M.W.K., Stirling, C.M., Rodrigo, V.H.L.: Growth, photosynthetic performance and shade adaptation of rubber (Hevea brasiliensis) grown in natural shade. — Tree Physiol. 23: 705–712, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. C. Dias
    • 1
  • G. Pinto
    • 1
  • C. Guerra
    • 1
  • C. Jesus
    • 1
  • J. Amaral
    • 1
  • C. Santos
    • 1
  1. 1.Department of Biology and Centre for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal

Personalised recommendations