Biologia Plantarum

, Volume 57, Issue 3, pp 531–539 | Cite as

Impact of phloem girdling on leaf gas exchange and hydraulic conductance in hybrid aspen

  • A. SellinEmail author
  • A. Niglas
  • E. Õunapuu
  • A. Karusion


We investigated phloem-xylem interactions in relation to leaf hydraulic capacity in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) by using phloem girdling method. Removal of bark tissues (phloem girdling) at the branch base resulted in a substantial decline in stomatal conductance (gS), net photosynthetic rate (PN), and leaf hydraulic efficiency, and in increase of leaf water potential (ΨL). Although gS declined more than PN (83 versus 78 %), the ratio of intercellular to ambient CO2 concentrations (ci/ca) increased from 0.67 to 0.87 in three days after girdling. Girdling induced a decrease in leaf hydraulic conductance (KL) on average by 43 % (P = 0.006). The changes in gS and leaf conductance to water vapour were co-ordinated with KL only in girdled branches whereas intrinsic water-use efficiency was invariant to KL. The declines in KL with girdling were not accompanied by changes in potassium ion concentration ([K+]), electrical conductivity, or pH of xylem sap. The results suggest that phloem girdling at the branch base does not influence the recirculation of ions between the phloem and xylem in hybrid aspen and the decrease of KL in response to the manipulation is not related to changes in [K+] and total ionic content of xylem sap.

Additional key words

leaf water potential net photosynthetic rate phloem-xylem interactions potassium stomatal conductance water-use efficiency xylem sap 



ratio of intercellular to ambient CO2 concentration


transpiration rate


leaf conductance to water vapour


stomatal conductance to water vapour


intrinsic water-use efficiency


potassium ion concentration of xylem sap


leaf hydraulic conductance


net photosynthetic rate


leaf temperature


electrical conductivity of xylem sap


branch xylem water potential


leaf water potential


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brodribb, T.J., Holbrook, N.M.: Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. — New Phytol. 158: 295–303, 2003.CrossRefGoogle Scholar
  2. Cernusak, L.A., Marshall, J.D.: Responses of foliar δ13C, gas exchange and leaf morphology to reduced hydraulic conductivity in Pinus monticola branches. — Tree Physiol. 21: 1215–1222, 2001.PubMedCrossRefGoogle Scholar
  3. Chen, J.-W., Zhang, Q., Cao, K.-F.: Inter-species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south-western China. — Ecol. Res. 24: 65–73, 2009.CrossRefGoogle Scholar
  4. Christman, M.A., Sperry, J.S., Smith, D.D.: Rare pits, large vessels and extreme vulnerability to cavitation in a ringporous tree species. — New Phytol. 193: 713–720, 2012.PubMedCrossRefGoogle Scholar
  5. Cochard, H., Herbette, S., Hernández, E., Hölttä, T., Mencuccini, M.: The effects of sap ionic composition on xylem vulnerability to cavitation. — J. exp. Bot. 61: 275–285, 2010.PubMedCrossRefGoogle Scholar
  6. De Boer, A.H., Volkov, V.: Logistics of water and salt transport through the plant: structure and functioning of the xylem. — Plant Cell Environ. 26: 87–101, 2003.CrossRefGoogle Scholar
  7. Dickmann, D.I., Kuzovkina, J.: Poplars and Willows of the World, with Emphasis on Silviculturally Important Species. — FAO, Rome 2008.Google Scholar
  8. Di Vaio, C., Petito, A., Buccheri, M.: Effect of girdling on gas exchanges and leaf mineral content in the ‘Independence’ nectarine. — J. Plant Nutr. 24: 1047–1060, 2001.CrossRefGoogle Scholar
  9. Domec, J.-C., Pruyn, M.L.: Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees. — Tree Physiol. 28: 1493–1504, 2008.PubMedCrossRefGoogle Scholar
  10. Esau, K.: Anatomy of Seed Plants. — John Wiley & Sons, New York 1977.Google Scholar
  11. Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 503–537, 1989.CrossRefGoogle Scholar
  12. Fumuro, M.: Effects of trunk girdling during early shoot elongation period on tree growth, mineral absorption, water stress, and root respiration in Japanese persimmon (Diospyros kaki L.) cv. Nishimurawase. — J. jap. Soc. hort. Sci. 67: 219–227, 1998.CrossRefGoogle Scholar
  13. Gascó, A., Gortan, E., Salleo, S., Nardini, A.: Changes of pH of solutions during perfusion through stem segments: further evidence for hydrogel regulation of xylem hydraulic properties? — Biol. Plant. 52: 502–506, 2008.CrossRefGoogle Scholar
  14. Gascó, A., Nardini, A., Gortan, E., Salleo, S.: Ion-mediated increase in the xylem hydraulic conductivity: role of pits and consequences for the impact of cavitation on water transport in plants. — Plant Cell Environ. 29: 1946–1955, 2006.PubMedCrossRefGoogle Scholar
  15. Hubbard, R.M., Ryan, M.G., Stiller, V., Sperry, J.S.: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. — Plant Cell Environ. 24: 113–121, 2001.CrossRefGoogle Scholar
  16. Jang, J.-C., Leon, P., Zhou, L., Sheen, J.: Hexokinase as a sugar sensor in higher plants. — Plant Cell 9: 5–19, 1997.PubMedGoogle Scholar
  17. Jeschke, D.W., Pate, J.S.: Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. — J. exp. Bot. 42: 1105–1116, 1991.CrossRefGoogle Scholar
  18. Kanai, S., Moghaieb, R.E., El-Shemy, H.A., Panigrahi, R., Mohapatra, P.K., Ito, J., Nguyen, N.T., Saneoka, H., Fujita, K.: Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. — Plant Sci. 180: 368–374, 2011.PubMedCrossRefGoogle Scholar
  19. Kupper, P., Sõber, J., Sellin, A., Lõhmus, K., Tullus, A., Räim, O., Lubenets, K., Tulva, I., Uri, V., Zobel, M., Kull, O., Sõber, A.: An experimental facility for Free Air Humidity Manipulation (FAHM) can alter water flux through deciduous tree canopy. — Environ. exp. Bot. 72: 432–438, 2011.CrossRefGoogle Scholar
  20. Kuwagata, T., Ishikawa-Sakurai, J., Hayashi, H., Nagasuga, K., Fukushi, K., Ahamed, A., Takasugi, K., Katsuhara, M., Murai-Hatano, M.: Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants. — Plant Cell Physiol. 53: 1418–1431, 2012.PubMedCrossRefGoogle Scholar
  21. Lee, J., Holbrook, N.M., Zwieniecki, M.A. Ion induced changes in the structure of bordered pit membranes. — Front. Plant Sci. 3: 55. doi: 10.3389/fpls.2012.00055, 2012.PubMedCrossRefGoogle Scholar
  22. Levin, M., Lemcoff, J.H., Cohen, S., Kapulnik, Y.: Low air humidity increases leaf-specific hydraulic conductance of Arabidopsis thaliana (L.) Heynh (Brassicaceae). — J. exp. Bot. 58: 3711–3718, 2007.PubMedCrossRefGoogle Scholar
  23. Maunoury-Danger, F., Fresneau, C., Eglin, T., Berveiller, D., François, C., Lelarge-Trouverie, C., Damesin, C.: Impact of carbohydrate supply on stem growth, wood and respired CO2 δ13C: assessment by experimental girdling. — Tree Physiol. 30: 818–830, 2010.PubMedCrossRefGoogle Scholar
  24. Murakami, P.F., Schaberg, P.G., Shane, J.B.: Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maple trees during autumn. — Tree Physiol. 28: 1467–1473, 2008.PubMedCrossRefGoogle Scholar
  25. Myers, D.A., Thomas, R.B., DeLucia, E.H.: Photosynthetic responses of loblolly pine (Pinus taeda) needles to experimental reduction in sink demand. — Tree Physiol. 19: 235–242, 1999.PubMedCrossRefGoogle Scholar
  26. Nardini, A., Gasco, A., Trifilo, P., Lo Gullo, M.A., Salleo, S.: Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca2+ in the sap. — J. exp. Bot. 58: 2609–2615, 2007.PubMedCrossRefGoogle Scholar
  27. Nardini, A., Grego, F., Trifilò, P., Salleo, S.: Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis. — Tree Physiol. 30: 628–635, 2010.PubMedCrossRefGoogle Scholar
  28. Nardini, A., Tyree, M.T., Salleo, S.: Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. — Plant Physiol. 125: 1700–1709, 2001.PubMedCrossRefGoogle Scholar
  29. Nemec, S.: Vessel blockage by myelin forms in citrus with and without rough-lemon decline symptoms. — Can. J. Bot. 53: 102–108, 1975.CrossRefGoogle Scholar
  30. Neumann, P.M, Weissman, R., Stefano, G., Mancuso, S.: Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance. — J. exp. Bot. 61: 1711–1717, 2010.PubMedCrossRefGoogle Scholar
  31. Noel, A.R.A.: The girdled tree. — Bot. Rev. 36: 162–195, 1970.CrossRefGoogle Scholar
  32. Offler, C.E., McCurdy, D.W., Patrick, J.W., Talbot, M.J.: Transfer cells: cells specialized for a special purpose. — Annu. Rev. Plant Biol. 54: 431–454, 2002.CrossRefGoogle Scholar
  33. Pate, J.S., Jeschke, W.D.: Role of stems in transport, storage, and circulation of ions and metabolites by the whole plant. — In: Gartner, B.L. (ed.): Plant Stems. Physiology and Functional Morphology. Pp. 177–204. Academic Press, San Diego 1995.Google Scholar
  34. Rivas, F., Gravina, A., Agustí, M.: Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. — Tree Physiol. 27: 527–535, 2007.PubMedCrossRefGoogle Scholar
  35. Ryden, P., MacDougall, A.J., Tibbits, C.W., Ring, S.G.: Hydration of pectic polysaccharides. — Biopolymers 54: 398–405, 2000.PubMedCrossRefGoogle Scholar
  36. Sack, L., Holbrook, N.M.: Leaf hydraulics. — Annu. Rev. Plant Biol. 57: 361–381, 2006.PubMedCrossRefGoogle Scholar
  37. Sack, L., Tyree, M.T., Holbrook, N.M.: Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. — New Phytol. 167: 403–413, 2005.PubMedCrossRefGoogle Scholar
  38. Salleo, S., Lo Gullo, M.A., De Paoli, D., Zippo, M.: Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. — New Phytol. 132: 47–56, 1996.CrossRefGoogle Scholar
  39. Salleo, S., Lo Gullo, M.A., Trifilò, P., Nardini, A.: New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. — Plant Cell Environ. 27: 1065–1076, 2004.CrossRefGoogle Scholar
  40. Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T.: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. — Oecologia 140: 543–550, 2004.PubMedCrossRefGoogle Scholar
  41. Sellin, A.: Does pre-dawn water potential reflect conditions of equilibrium in plant and soil water status? — Acta oecol. 20: 51–59, 1999.CrossRefGoogle Scholar
  42. Sellin, A., Eensalu, E., Niglas, A.: Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula. — Ecol. Res. 25: 173–183, 2010b.CrossRefGoogle Scholar
  43. Sellin, A., Õunapuu, E., Karusion, A.: Experimental evidence supporting the concept of light-mediated modulation of stem hydraulic conductance. — Tree Physiol. 30: 1528–1535, 2010a.PubMedCrossRefGoogle Scholar
  44. Sellin, A., Õunapuu, E., Kupper, P.: Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula). — Physiol. Plant. 134: 412–420, 2008.PubMedCrossRefGoogle Scholar
  45. Sellin, A., Sack, L., Õunapuu, E., Karusion, A.: Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula). — Plant Cell Environ. 34: 1079–1087, 2011.PubMedCrossRefGoogle Scholar
  46. Setter, T.L., Brun, W.A., Brenner, M.L.: Effect of obstructed translocation of leaf abscisic acid on associated stomatal closure and photosynthesis decline. — Plant Physiol. 65: 1111–1115, 1980.PubMedCrossRefGoogle Scholar
  47. Sevanto, S., Hölttä, T., Holbrook, N.M.: Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. — Plant Cell Environ. 34: 690–703, 2011.PubMedCrossRefGoogle Scholar
  48. Siebrecht, S., Herdel, K., Schurr, U., Tischner, R.: Nutrient translocation in the xylem of poplar: diurnal variations and spatial distribution along the shoot axis. — Planta 217: 783–793, 2003.PubMedCrossRefGoogle Scholar
  49. Sokal, R.R., Rohlf, F.J.: Biometry: the Principles and Practice of Statistics in Biological Research. — W. H. Freeman and Co, New York 1995.Google Scholar
  50. Sperry, J.S., Tyree, M.T.: Mechanism of water stress-induced xylem embolism. — Plant Physiol. 88: 581–587, 1988.PubMedCrossRefGoogle Scholar
  51. Sperry, J.S., Donnelly, J.R., Tyree, M.T.: A method for measuring hydraulic conductivity and embolism in xylem. — Plant Cell Environ. 11: 35–40, 1988.CrossRefGoogle Scholar
  52. Stark, N., Spitzner, C., Essig, D.: Xylem sap analysis for determining the nutritional status of trees: Pseudotsuga menziesii. — Can. J. Forest. Res. 15: 429–437, 1985.CrossRefGoogle Scholar
  53. Taylor, D., Eamus, D.: Coordinating leaf functional traits with branch hydraulic conductivity: resource substitution and implications for carbon gain. — Tree Physiol. 28: 1169–1177, 2008.PubMedCrossRefGoogle Scholar
  54. Tyree, M.T., Zimmermann, M.H.: Xylem Structure and the Ascent of Sap. — Springer-Verlag, Berlin 2002.CrossRefGoogle Scholar
  55. Urban, L., Alphonsout, L.: Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves. — Tree Physiol. 27: 345–352, 2007.PubMedCrossRefGoogle Scholar
  56. Van Bel, A.J.E.: Xylem-phloem exchange via the rays: the undervalued route of transport. — J. exp. Bot. 41: 631–644, 1990.CrossRefGoogle Scholar
  57. Van Doorn, W.G., Hiemstra, T., Fanourakis, D.: Hydrogel regulation of xylem water flow: an alternative hypothesis. — Plant Physiol. 157: 1642–1649, 2011.PubMedCrossRefGoogle Scholar
  58. Van Ieperen, W.: Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? — Trends Plant Sci. 12: 137–142, 2007.PubMedCrossRefGoogle Scholar
  59. Van Ieperen, W., Van Meeteren, U., Van Gelder, H.: Fluid ionic composition influences hydraulic conductance of xylem conduits. — J. exp. Bot. 51: 769–776, 2000.PubMedCrossRefGoogle Scholar
  60. Wilson, B.F., Gartner, B.L.: Effects of phloem girdling in conifers on apical control of branches, growth allocation and air in wood. — Tree Physiol. 22: 347–353, 2002.PubMedCrossRefGoogle Scholar
  61. Williams, L.E., Ayars, J.E.: Water use of Thompson Seedless grapevines as affected by the application of gibberellic acid (GA3) and trunk girdling — practices to increase berry size. — Agr. Forest. Meteorol. 129: 85–94, 2005.CrossRefGoogle Scholar
  62. Williams, L.E., Retzlaff, W.A., Yang, W.G., Biscay, P.J., Ebisuda, N.: Effect of girdling on leaf gas exchange, water status, and non-structural carbohydrates of field-grown Vitis vinifera L. (cv. Flame Seedless). — Amer. J. Enol. Viticult. 51: 49–54, 2000.Google Scholar
  63. Wullschleger, S.D., Meinzer, F.C., Vertessy, R.A.: A review of whole-plant water use studies in trees. — Tree Physiol. 18: 499–512, 1998.PubMedCrossRefGoogle Scholar
  64. Zhang, J.-L., Cao, K.-F.: Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. — Funct. Ecol. 23: 658–667, 2009.CrossRefGoogle Scholar
  65. Zweifel, R., Item, H., Häsler, R.: Stem radius changes and their relation to stored water in stems of young Norway spruce trees. — Trees 15: 50–57, 2000.CrossRefGoogle Scholar
  66. Zwieniecki, M.A., Hutyra, L., Thompson, M.V., Holbrook, N.M.: Dynamic changes in petiole specific conductivity in red maple (Acer rubrum L.), tulip tree (Liriodendron tulipifera L.) and northern fox grape (Vitis labrusca L.). — Plant Cell Environ. 23: 407–414, 2000.CrossRefGoogle Scholar
  67. Zwieniecki, M.A., Melcher, P.J., Feild, T.S., Holbrook, N.M.: A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance. — Tree Physiol. 24: 911–917, 2004.PubMedCrossRefGoogle Scholar
  68. Zwieniecki, M.A., Melcher, P.J., Holbrook, N.M.: Hydrogel control of xylem hydraulic resistance in plants. — Science 291: 1059–1062, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Sellin
    • 1
    Email author
  • A. Niglas
    • 1
  • E. Õunapuu
    • 1
  • A. Karusion
    • 1
  1. 1.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations