Characterization and gene mapping of a chlorophyll-deficient mutant clm1 of Triticum monococcum L.
- 464 Downloads
- 8 Citations
Abstract
Diploid wheat Triticum monococcum L. is a model plant for wheat functional genomics. Chlorophyll-deficient mutant (clm1) was identified during manual screening of the ethyl methanesulphonate (EMS)-treated M2 progenies of T. monococcum accession pau14087 in the field. The clm1 mutant, due to significantly decreased chlorophyll content compared with the wild-type (WT), exhibited pale yellow leaves which slowly recovered to green before flowering. The clm1 mutant showed early flowering, reduced number of tillers, trichome length and density, and different shape as compared with the WT. At the same time, clm1 mutant culm had more chlorophyll-containing parenchymatous tissues compared to WT, presumably to absorb more sunlight for photosynthesis. Genetic analysis indicated that the clm1 mutation was monogenic recessive. The clm1 mutant was mapped between Xgwm473 and Xwmc96 SSR markers, with genetic distances of 2.1 and 2.6 cM, respectively, on the 7AmL chromosome.
Additional key words
bulk segregant analysis diploid wheat ethylmethane sulfonate gene mapping SSR markerAbbreviations
- BSA
bulk segregant analysis
- Chl
chlorophyll
- clm1
chlorophyll-deficient mutant
- EMS
ethylmethane sulfonate
- M2
second generation after mutagenesis
- PCR
polymerase chain reaction
- RILs
recombinant inbred lines
- SEM
scanning electron microscopy
- T.S.
transverse section
- WT
wild-type
Preview
Unable to display preview. Download preview PDF.
References
- Ansari, M.J., Kumar, R., Singh, K., Dhaliwal, H.S.: Characterization and molecular mapping of EMS-induced brittle culm mutants of diploid wheat (Triticum monococcum L.). — Euphytica 186: 165–176, 2012.CrossRefGoogle Scholar
- Arnon, D.I.: Copper enzymes in isolated chloroplast; polyphenols-oxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.PubMedCrossRefGoogle Scholar
- Beale, S.I.: Green genes gleaned. — Trends Plant Sci. 10: 309–312, 2005.PubMedCrossRefGoogle Scholar
- Chang, H.B., Abe, T., Matsuyama, T., Fukunishi, N., Nagata, N., Nakano, T., Kaneko, Y., Miyoshi, K., Matsushima, H., Yoshida, S.: Regulation of chloroplast gene expression is affected in ali, a novel tobacco albino mutant. — Ann. Bot. 88: 545–553, 2001.Google Scholar
- Chen, T., Zhang, Y.D., Zhao, L., Zhu, Z., Lin, J., Zhang, S.B., Wang, C.L.: Physiological character and gene mapping in a new green-revertible albino mutant in rice. — J. Genet. Genomics 34: 331–338, 2007.PubMedCrossRefGoogle Scholar
- Chen, T., Zhang, Y.D., Zhao, L., Zhu, Z., Lin, J., Zhang, S.B., Wang, C.L.: Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. — J. Genet. Genomics 36: 117–123, 2009.PubMedCrossRefGoogle Scholar
- Du, P., Ling, Y.H., Sang, X.C., Zhao, F.M., Xie, R., Yang, Z.L., He, G.H.: Gene mapping related to yellow green leaf in a mutant line in rice. — Genes Genomics 31: 165–171, 2009.CrossRefGoogle Scholar
- Dubcovsky, J., Luo, M.C., Zhang, G.Y., Bainsteitter, R., Desai, A., Kilian, A., Kleinhofs, A., Dvorak, J.: Genetic map of diploid wheat T. monococcum L. and its comparison with maps of H. vulgare L. — Genetics 143: 983–999, 1996.PubMedGoogle Scholar
- Dunford, R., Walden, R.M.: Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. — Curr. Genet. 20: 339–347, 1991.PubMedCrossRefGoogle Scholar
- Falbel, T.G., Meehl, J.B., Staehelin, A.: Severity of mutant phenotype in a series of chlorophyll deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. — Plant Physiol. 112: 821–832, 1996.PubMedCrossRefGoogle Scholar
- Falbel, T.G., Staehelin, L.A.: Characterization of a family of chlorophyll-deficient wheat and barley mutants with defects in the Mg-insertion step of chlorophyll biosynthesis. — Plant Physiol. 104: 639–648, 1994.PubMedCrossRefGoogle Scholar
- Falbel, T.G., Staehelin, L.A.: Partial block in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll b-deficient mutants. — Physiol. Plant. 97: 311–320, 1996.CrossRefGoogle Scholar
- Freeman, T.P., Duysen, M.E., Olson, N.H., Williams, N.D.: Electron transport and chloroplast ultrastructure of a chlorophyll-deficient mutant of wheat. — Photosyn. Res. 3: 179–189, 1982.CrossRefGoogle Scholar
- Freeman, T.P., Duysen, M.E., Williams, N.D.: Effects of gene dosage on light harvesting chlorophyll accumulation, chloroplast development, and photosynthesis in wheat. — Can. J. Bot. 65: 2118–2123, 1987.CrossRefGoogle Scholar
- Guo, A.G., Feng, X.Z., Zhao, L.L., Wang, P.H.: [Studies on the activity of translation and transcription in the leaves of wheat albescent line.] — Acta agr. boreali-occidentalis sin. 24: 1–4, 1996. [In Chin., ab: E]Google Scholar
- Hsieh, M.H., Goodman, H.M.: The Arabidopsis IspH homolog is involved in the plastid non-mevalonate pathway of isoprenoid biosynthesis. — Plant Physiol. 138: 641–653, 2005.PubMedCrossRefGoogle Scholar
- Huang, X., Wang, P., Zhao, H., Deng, X.: Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. — Rice Sci. 15: 7–12, 2008.CrossRefGoogle Scholar
- Jiang, L., Guo, L., Jiang, H., Zeng, D., Hu, J., Wu, L., Liu, J., Gao, Z., Qian, Q.: Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice. — J. Genet. Genomics 35: 715–721, 2008.PubMedCrossRefGoogle Scholar
- Johansen, D.A.: Plant Micro-Technique. — McGraw-Hill Book Company, New York 1940.Google Scholar
- Kaul, M.L.H., Bhan, A.K.: Mutagenic effectiveness and efficiency of EMS, DES and gamma rays in rice. — Theor. appl. Genet. 50: 241–246, 1977.CrossRefGoogle Scholar
- Kim, D.Y., Bovet, L., Kushnir, S., Noh, E.W., Martinoia, E., Lee, Y.: AtATM3 is involved in heavy metal resistance in Arabidopsis. — Plant Physiol. 140: 922–932, 2006.PubMedCrossRefGoogle Scholar
- Koski, V.: Chlorophyll formation in seedlings of Zea mays L. — Arch. Biochem. Biophys. 29: 339–343, 1950.Google Scholar
- Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L.: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. — Genomics 1: 174–181, 1987.PubMedCrossRefGoogle Scholar
- Li, C., Lin, D.-Z., Dong, Y.-J, Ye, S.-H., Zhang, X.-M.: Genetic analysis and mapping of a thermo-sensitive white stripe-leaf mutant at seedling stage in rice (Oryza sativa). — Rice Sci. 17: 276–281, 2010.CrossRefGoogle Scholar
- Lincoln, S.E., Daly, M.J., Lander, E.S.: Constructing genetic maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. — Whitehead Institute for Biomedical Research, Cambridge 1993.Google Scholar
- Liu, W.Z., Fu, Y.P., Hu, G.C., Si, H.M., Zhu, L., Wu, C., Sun, Z.X.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). — Planta 226: 785–795, 2007.PubMedCrossRefGoogle Scholar
- Liu, Z.L., Yang, Z., Liu, W.J., Du, J.B., Tian, W.J., Luo, M.H., Lin, H.H.: Mutation mechanism of chlorophyll-less barley mutant NYB. — Photosynthetica 46: 73–78, 2008.CrossRefGoogle Scholar
- Long, D., Martin, M., Sundberg, E., Swinburne, J., Puangsomlee, Coupland, G.: The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: Identification of an albino mutation induced by Ds insertion. — Proc. nat. Acad. Sci. USA 90: 10370–10374, 1993.PubMedCrossRefGoogle Scholar
- Mochizuki, N., Brusslan, J.A., Larkin, R., Nagatani, A., Chory, J.: Arabidopsis genome’s uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. — Proc. nat. Acad. Sci. USA 98: 2053–2058, 2001.PubMedCrossRefGoogle Scholar
- Mou, Z.L., He, Y.K., Dai, Y., Liu, X.F., Li, J.: Deficiency in fatty acid synthase leads to premature cell death and dramatic alteration in plant morphology. — Plant Cell 12: 405–417, 2000PubMedGoogle Scholar
- Nealson, K.H., Conrad, P.G.: Life: past, present and future. — Phil Trans. roy. Soc. London B 354: 1923–1939, 1999.Google Scholar
- Parks, B.M., Quail, P.H.: Phytochrome-deficient hy1 and hy2 long hypocotyls mutant of Arabidopsis are defective in phytochrome chromophore biosynthesis. — Plant Cell 3: 1177–1186, 1991.PubMedGoogle Scholar
- Pettigrew, R., Driscoll, C.J., Rienits, K.G.: A spontaneous chlorophyll mutant in hexaploid wheat. — Heredity 24: 481–487, 1969.CrossRefGoogle Scholar
- Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, A.R., Allard, R.W.: Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. — Proc. nat. Acad. Sci. 81: 8014–8018, 1984.PubMedCrossRefGoogle Scholar
- Sang, X., Fang, L., Vanichpakorn, Y., Ling, Y., Du, P., Zhao, F., Yang, Z., He, G.: Physiological character and molecular mapping of leaf-color mutant wyv1 in rice (Oryza sativa L.) — Genes Genomics 32: 123–128, 2010.CrossRefGoogle Scholar
- Sears, L.M.S., Sears, E.R.: The mutants chlorina-1 and Hermsen’s virescent. — In: Finlay, K.W., Shepherd, K.W. (ed.): Proceedings of the Third International Wheat Genetics Symposium. Pp. 299–305. Plenum Press, New York 1968.Google Scholar
- Shen, B., Zhuang, J., Zhang, K., Dai, W., Lu, Y., Fu, L., Ding, J., Zheng, K.: QTL mapping of chlorophyll contents in rice. — Agr. Sci. China 6: 17–24, 2007.CrossRefGoogle Scholar
- Singh, K., Ghai, M., Garg, M., Chhuneja, P., Kaur, P., Schnurbusch, T., Keller, B., Dhaliwal, H.S.: An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. — Theor. appl. Genet. 115: 301–312, 2007.PubMedCrossRefGoogle Scholar
- Somers, D.J., Isaac, P., Edwards, K.: A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). — Theor. appl. Genet. 109: 1105–1114, 2004.PubMedCrossRefGoogle Scholar
- Stern, D.B., Hanson, M.R., Barkan, A.: Genetics and genomics of chloroplast biogenesis: maize as a model system. — Trends Plant Sci. 9: 293–301, 2004.PubMedCrossRefGoogle Scholar
- Tian, F.X., Gong, J.F., Wang, G.P., Wang, G.K., Fan, Z.Y., Wang, W.: Improved drought resistance in a wheat staygreen mutant tasg1 under field conditions. — Biol. Plant. 56: 509–515, 2012.CrossRefGoogle Scholar
- Wang, Q.S., Sang, X.C., Ling, Y.H., Zhao, F.M., Yang, Z.L., Li, Y., He, G.H.: Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.). — J. Genet. Genomics 36: 679–684, 2009.PubMedCrossRefGoogle Scholar
- Washington, W.J., Sears, E.R.: Ethyl methane sulfonateinduced chlorophyll mutations in Triticum aestivum. — Can. J. Genet. Cytol. 12: 851–859, 1970.PubMedGoogle Scholar
- Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E., Keller, B.: Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. — Plant J. 26: 307–316, 2001.PubMedCrossRefGoogle Scholar
- Wu, Z.M., Zhang, X., He, B., Diao, L.P., Sheng, S.L., Wang, J.L., Guo, X.P., Su, N., Wang, L.F., Jiang, L., Wang, C.M., Zhai, H.Q., Wan, J.M.: A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. — Plant Physiol. 145: 29–40, 2007.PubMedCrossRefGoogle Scholar
- Zhang, H., Zhang, D., Han, S., Zhang, X., Yu, D.: Identification and gene mapping of a soybean chlorophyll-deficient mutant. — Plant Breed. 130: 133–138, 2011.CrossRefGoogle Scholar
- Zou, J.J., Singh, R.G., Hymowitz, T.: Association of the yellow leaf (y10) mutant to soybean chromosome 3. — J. Hered. 94: 352–355, 2003.PubMedCrossRefGoogle Scholar