Biologia Plantarum

, Volume 57, Issue 3, pp 442–448 | Cite as

Characterization and gene mapping of a chlorophyll-deficient mutant clm1 of Triticum monococcum L.

  • M. J. Ansari
  • A. Al-Ghamdi
  • R. Kumar
  • S. Usmani
  • Y. Al-Attal
  • A. Nuru
  • A. A. Mohamed
  • K. Singh
  • H. S. Dhaliwal
Article

Abstract

Diploid wheat Triticum monococcum L. is a model plant for wheat functional genomics. Chlorophyll-deficient mutant (clm1) was identified during manual screening of the ethyl methanesulphonate (EMS)-treated M2 progenies of T. monococcum accession pau14087 in the field. The clm1 mutant, due to significantly decreased chlorophyll content compared with the wild-type (WT), exhibited pale yellow leaves which slowly recovered to green before flowering. The clm1 mutant showed early flowering, reduced number of tillers, trichome length and density, and different shape as compared with the WT. At the same time, clm1 mutant culm had more chlorophyll-containing parenchymatous tissues compared to WT, presumably to absorb more sunlight for photosynthesis. Genetic analysis indicated that the clm1 mutation was monogenic recessive. The clm1 mutant was mapped between Xgwm473 and Xwmc96 SSR markers, with genetic distances of 2.1 and 2.6 cM, respectively, on the 7AmL chromosome.

Additional key words

bulk segregant analysis diploid wheat ethylmethane sulfonate gene mapping SSR marker 

Abbreviations

BSA

bulk segregant analysis

Chl

chlorophyll

clm1

chlorophyll-deficient mutant

EMS

ethylmethane sulfonate

M2

second generation after mutagenesis

PCR

polymerase chain reaction

RILs

recombinant inbred lines

SEM

scanning electron microscopy

T.S.

transverse section

WT

wild-type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansari, M.J., Kumar, R., Singh, K., Dhaliwal, H.S.: Characterization and molecular mapping of EMS-induced brittle culm mutants of diploid wheat (Triticum monococcum L.). — Euphytica 186: 165–176, 2012.CrossRefGoogle Scholar
  2. Arnon, D.I.: Copper enzymes in isolated chloroplast; polyphenols-oxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.PubMedCrossRefGoogle Scholar
  3. Beale, S.I.: Green genes gleaned. — Trends Plant Sci. 10: 309–312, 2005.PubMedCrossRefGoogle Scholar
  4. Chang, H.B., Abe, T., Matsuyama, T., Fukunishi, N., Nagata, N., Nakano, T., Kaneko, Y., Miyoshi, K., Matsushima, H., Yoshida, S.: Regulation of chloroplast gene expression is affected in ali, a novel tobacco albino mutant. — Ann. Bot. 88: 545–553, 2001.Google Scholar
  5. Chen, T., Zhang, Y.D., Zhao, L., Zhu, Z., Lin, J., Zhang, S.B., Wang, C.L.: Physiological character and gene mapping in a new green-revertible albino mutant in rice. — J. Genet. Genomics 34: 331–338, 2007.PubMedCrossRefGoogle Scholar
  6. Chen, T., Zhang, Y.D., Zhao, L., Zhu, Z., Lin, J., Zhang, S.B., Wang, C.L.: Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. — J. Genet. Genomics 36: 117–123, 2009.PubMedCrossRefGoogle Scholar
  7. Du, P., Ling, Y.H., Sang, X.C., Zhao, F.M., Xie, R., Yang, Z.L., He, G.H.: Gene mapping related to yellow green leaf in a mutant line in rice. — Genes Genomics 31: 165–171, 2009.CrossRefGoogle Scholar
  8. Dubcovsky, J., Luo, M.C., Zhang, G.Y., Bainsteitter, R., Desai, A., Kilian, A., Kleinhofs, A., Dvorak, J.: Genetic map of diploid wheat T. monococcum L. and its comparison with maps of H. vulgare L. — Genetics 143: 983–999, 1996.PubMedGoogle Scholar
  9. Dunford, R., Walden, R.M.: Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. — Curr. Genet. 20: 339–347, 1991.PubMedCrossRefGoogle Scholar
  10. Falbel, T.G., Meehl, J.B., Staehelin, A.: Severity of mutant phenotype in a series of chlorophyll deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. — Plant Physiol. 112: 821–832, 1996.PubMedCrossRefGoogle Scholar
  11. Falbel, T.G., Staehelin, L.A.: Characterization of a family of chlorophyll-deficient wheat and barley mutants with defects in the Mg-insertion step of chlorophyll biosynthesis. — Plant Physiol. 104: 639–648, 1994.PubMedCrossRefGoogle Scholar
  12. Falbel, T.G., Staehelin, L.A.: Partial block in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll b-deficient mutants. — Physiol. Plant. 97: 311–320, 1996.CrossRefGoogle Scholar
  13. Freeman, T.P., Duysen, M.E., Olson, N.H., Williams, N.D.: Electron transport and chloroplast ultrastructure of a chlorophyll-deficient mutant of wheat. — Photosyn. Res. 3: 179–189, 1982.CrossRefGoogle Scholar
  14. Freeman, T.P., Duysen, M.E., Williams, N.D.: Effects of gene dosage on light harvesting chlorophyll accumulation, chloroplast development, and photosynthesis in wheat. — Can. J. Bot. 65: 2118–2123, 1987.CrossRefGoogle Scholar
  15. Guo, A.G., Feng, X.Z., Zhao, L.L., Wang, P.H.: [Studies on the activity of translation and transcription in the leaves of wheat albescent line.] — Acta agr. boreali-occidentalis sin. 24: 1–4, 1996. [In Chin., ab: E]Google Scholar
  16. Hsieh, M.H., Goodman, H.M.: The Arabidopsis IspH homolog is involved in the plastid non-mevalonate pathway of isoprenoid biosynthesis. — Plant Physiol. 138: 641–653, 2005.PubMedCrossRefGoogle Scholar
  17. Huang, X., Wang, P., Zhao, H., Deng, X.: Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. — Rice Sci. 15: 7–12, 2008.CrossRefGoogle Scholar
  18. Jiang, L., Guo, L., Jiang, H., Zeng, D., Hu, J., Wu, L., Liu, J., Gao, Z., Qian, Q.: Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice. — J. Genet. Genomics 35: 715–721, 2008.PubMedCrossRefGoogle Scholar
  19. Johansen, D.A.: Plant Micro-Technique. — McGraw-Hill Book Company, New York 1940.Google Scholar
  20. Kaul, M.L.H., Bhan, A.K.: Mutagenic effectiveness and efficiency of EMS, DES and gamma rays in rice. — Theor. appl. Genet. 50: 241–246, 1977.CrossRefGoogle Scholar
  21. Kim, D.Y., Bovet, L., Kushnir, S., Noh, E.W., Martinoia, E., Lee, Y.: AtATM3 is involved in heavy metal resistance in Arabidopsis. — Plant Physiol. 140: 922–932, 2006.PubMedCrossRefGoogle Scholar
  22. Koski, V.: Chlorophyll formation in seedlings of Zea mays L. — Arch. Biochem. Biophys. 29: 339–343, 1950.Google Scholar
  23. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L.: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. — Genomics 1: 174–181, 1987.PubMedCrossRefGoogle Scholar
  24. Li, C., Lin, D.-Z., Dong, Y.-J, Ye, S.-H., Zhang, X.-M.: Genetic analysis and mapping of a thermo-sensitive white stripe-leaf mutant at seedling stage in rice (Oryza sativa). — Rice Sci. 17: 276–281, 2010.CrossRefGoogle Scholar
  25. Lincoln, S.E., Daly, M.J., Lander, E.S.: Constructing genetic maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. — Whitehead Institute for Biomedical Research, Cambridge 1993.Google Scholar
  26. Liu, W.Z., Fu, Y.P., Hu, G.C., Si, H.M., Zhu, L., Wu, C., Sun, Z.X.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). — Planta 226: 785–795, 2007.PubMedCrossRefGoogle Scholar
  27. Liu, Z.L., Yang, Z., Liu, W.J., Du, J.B., Tian, W.J., Luo, M.H., Lin, H.H.: Mutation mechanism of chlorophyll-less barley mutant NYB. — Photosynthetica 46: 73–78, 2008.CrossRefGoogle Scholar
  28. Long, D., Martin, M., Sundberg, E., Swinburne, J., Puangsomlee, Coupland, G.: The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: Identification of an albino mutation induced by Ds insertion. — Proc. nat. Acad. Sci. USA 90: 10370–10374, 1993.PubMedCrossRefGoogle Scholar
  29. Mochizuki, N., Brusslan, J.A., Larkin, R., Nagatani, A., Chory, J.: Arabidopsis genome’s uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. — Proc. nat. Acad. Sci. USA 98: 2053–2058, 2001.PubMedCrossRefGoogle Scholar
  30. Mou, Z.L., He, Y.K., Dai, Y., Liu, X.F., Li, J.: Deficiency in fatty acid synthase leads to premature cell death and dramatic alteration in plant morphology. — Plant Cell 12: 405–417, 2000PubMedGoogle Scholar
  31. Nealson, K.H., Conrad, P.G.: Life: past, present and future. — Phil Trans. roy. Soc. London B 354: 1923–1939, 1999.Google Scholar
  32. Parks, B.M., Quail, P.H.: Phytochrome-deficient hy1 and hy2 long hypocotyls mutant of Arabidopsis are defective in phytochrome chromophore biosynthesis. — Plant Cell 3: 1177–1186, 1991.PubMedGoogle Scholar
  33. Pettigrew, R., Driscoll, C.J., Rienits, K.G.: A spontaneous chlorophyll mutant in hexaploid wheat. — Heredity 24: 481–487, 1969.CrossRefGoogle Scholar
  34. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, A.R., Allard, R.W.: Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. — Proc. nat. Acad. Sci. 81: 8014–8018, 1984.PubMedCrossRefGoogle Scholar
  35. Sang, X., Fang, L., Vanichpakorn, Y., Ling, Y., Du, P., Zhao, F., Yang, Z., He, G.: Physiological character and molecular mapping of leaf-color mutant wyv1 in rice (Oryza sativa L.) — Genes Genomics 32: 123–128, 2010.CrossRefGoogle Scholar
  36. Sears, L.M.S., Sears, E.R.: The mutants chlorina-1 and Hermsen’s virescent. — In: Finlay, K.W., Shepherd, K.W. (ed.): Proceedings of the Third International Wheat Genetics Symposium. Pp. 299–305. Plenum Press, New York 1968.Google Scholar
  37. Shen, B., Zhuang, J., Zhang, K., Dai, W., Lu, Y., Fu, L., Ding, J., Zheng, K.: QTL mapping of chlorophyll contents in rice. — Agr. Sci. China 6: 17–24, 2007.CrossRefGoogle Scholar
  38. Singh, K., Ghai, M., Garg, M., Chhuneja, P., Kaur, P., Schnurbusch, T., Keller, B., Dhaliwal, H.S.: An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. — Theor. appl. Genet. 115: 301–312, 2007.PubMedCrossRefGoogle Scholar
  39. Somers, D.J., Isaac, P., Edwards, K.: A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). — Theor. appl. Genet. 109: 1105–1114, 2004.PubMedCrossRefGoogle Scholar
  40. Stern, D.B., Hanson, M.R., Barkan, A.: Genetics and genomics of chloroplast biogenesis: maize as a model system. — Trends Plant Sci. 9: 293–301, 2004.PubMedCrossRefGoogle Scholar
  41. Tian, F.X., Gong, J.F., Wang, G.P., Wang, G.K., Fan, Z.Y., Wang, W.: Improved drought resistance in a wheat staygreen mutant tasg1 under field conditions. — Biol. Plant. 56: 509–515, 2012.CrossRefGoogle Scholar
  42. Wang, Q.S., Sang, X.C., Ling, Y.H., Zhao, F.M., Yang, Z.L., Li, Y., He, G.H.: Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.). — J. Genet. Genomics 36: 679–684, 2009.PubMedCrossRefGoogle Scholar
  43. Washington, W.J., Sears, E.R.: Ethyl methane sulfonateinduced chlorophyll mutations in Triticum aestivum. — Can. J. Genet. Cytol. 12: 851–859, 1970.PubMedGoogle Scholar
  44. Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E., Keller, B.: Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. — Plant J. 26: 307–316, 2001.PubMedCrossRefGoogle Scholar
  45. Wu, Z.M., Zhang, X., He, B., Diao, L.P., Sheng, S.L., Wang, J.L., Guo, X.P., Su, N., Wang, L.F., Jiang, L., Wang, C.M., Zhai, H.Q., Wan, J.M.: A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. — Plant Physiol. 145: 29–40, 2007.PubMedCrossRefGoogle Scholar
  46. Zhang, H., Zhang, D., Han, S., Zhang, X., Yu, D.: Identification and gene mapping of a soybean chlorophyll-deficient mutant. — Plant Breed. 130: 133–138, 2011.CrossRefGoogle Scholar
  47. Zou, J.J., Singh, R.G., Hymowitz, T.: Association of the yellow leaf (y10) mutant to soybean chromosome 3. — J. Hered. 94: 352–355, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. J. Ansari
    • 1
    • 6
  • A. Al-Ghamdi
    • 1
  • R. Kumar
    • 2
  • S. Usmani
    • 3
  • Y. Al-Attal
    • 1
  • A. Nuru
    • 1
  • A. A. Mohamed
    • 1
  • K. Singh
    • 4
  • H. S. Dhaliwal
    • 5
  1. 1.Department of Plant Protection, College of Food and Agriculture SciencesKing Saud UniversityRiyadhKSA
  2. 2.Department of BiotechnologyICFAI UniversityDehradunIndia
  3. 3.D.K.M. College for WomenThiruvalluvar UniversityVelloreIndia
  4. 4.School of Agricultural BiotechnologyPunjab Agricultural UniversityLudhianaIndia
  5. 5.Akal School of BiotechnologyEternal UniversityBaru SahibIndia
  6. 6.Department of BiotechnologyIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations