Biologia Plantarum

, Volume 57, Issue 2, pp 274–280 | Cite as

Allelic differentiations and effects of the Rf3 and Rf4 genes on fertility restoration in rice with wild abortive cytoplasmic male sterility

  • J. Cai
  • Q. P. Liao
  • Z. J. Dai
  • H. T. Zhu
  • R. Z. Zeng
  • Z. M. Zhang
  • G. -Q. ZhangEmail author
Original Papers


To reveal the allelic differentiations at the two genes for fertility restoration (Rf) on chromosomes 1 (Rf3) and 10 (Rf4), 15 chromosome single segment substitution lines (SSSLs) with the Rf3 locus and 18 SSSLs with the Rf4 locus were crossed with Bobai A (BbA), a cytoplasmic male sterility line with wild abortive type of cytoplasm (WA-CMS), respectively. Based on the pollen and seed fertility of the F1 hybrids, the Rf3 and Rf4 genes were each classified into four alleles, namely Rf3-1, Rf3-2, Rf3-3, and Rf3-4 for Rf3, and Rf4-1, Rf4-2, Rf4-3, and Rf4-4 for Rf4. Out of the 33 SSSLs, an SSSL W23-19-06-06-11 carrying the genotype Rf3-4Rf3-4/Rf4-4Rf4-4 possessed the strongest restoring ability for BbA. To determine the genetic effects of Rf3 and Rf4 for WA-CMS, one BC3F2 population possessing the genetic background of W23-19-06-06-11 was generated from the cross between W23-19-06-06-11 and BbA by backcrossing and marker-assisted selection. In the BC3F2 population, the plants carrying the Rf3Rf3/Rf4Rf4, Rf3Rf3/rf4rf4, and rf3rf3/Rf4Rf4 genotypes were selected and their phenotyping for pollen and spikelet fertility were evaluated. The result showed that under the genetic background of SSSL W23-19-06-06-11, the effect of Rf4 appeared to be slightly larger than that of Rf3 and their effects were additive for WA-CMS system. These studies will lead to the transfer of Rf genes into adapted cultivars through marker-assisted selection in active hybrid rice breeding programs.

Additional key words

marker-assisted selection pollen fertility single segment substitution lines 



cytoplasmic male sterility


marker-assisted selection


polymerase chain reaction


pentatricopeptide repeat


quantitative trait loci


fertility restorer gene


restriction fragment length polymorphism


single segment substitution lines


wild abortive


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bentolila, S., Alfonso, A.A., Hanson, M.R.: A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male sterile plants. — PNAS 99: 10887–10892, 2002.PubMedCrossRefGoogle Scholar
  2. Chase, C., Babay-Laughnan, S.: Cytoplasmic male sterility and fertility restoration by nuclear genes. — In: Daniell, H., Chase, C. (ed.): Molecular Biology and Biotechnology of Plant Organelles. Pp. 593–622. Kluwer Academic Publishers, Dordrecht 2004.CrossRefGoogle Scholar
  3. Chen, J.J., Ding, J.H., Ouyang, Y.D., Du, H.Y., Yang, J.Y., Cheng, K., Zhao, J., Qiu, S.Q., Zhang, X.L., Yao, J.L., Liu, K.D., Wang, L., Xu, C.G., Li, X.H., Xue, Y.B., Xia, M., Ji, Q., Lu, J., Xu, M..L., Zhang, Q.F.: A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. — Proc. nat. Acad. Sci. USA 105: 11436–11441, 2008.PubMedCrossRefGoogle Scholar
  4. Dellaporta, R.P., Wood, J., Hicks, J.D.: A plant DNA minipreparation: version II. — Plant mol. Biol. Rep. 1: 19–21, 1983.CrossRefGoogle Scholar
  5. Hanson, M.R., Bentolila, S.: Interactions of mitochondrial and nuclear genes that affect male gametophytic development. — Plant Cell 16 (Suppl.): S154-S169, 2004.Google Scholar
  6. He, F.H., Zeng, R.Z., Xi, Z.Y., Talukdar, A., Zhang, G.Q.: [Genetic diversity of different waxy genotypes in rice.] — Mol. Plant Breed. 1: 179–186, 2003. [In Chin.]Google Scholar
  7. He, F.H., Xi, Z.Y., Zeng, R.Z., Talukdar, A., Zhang, G.Q.: [Mapping of heading date QTLs in rice (Oryza sativa L.) using single segment substitution lines.] — Sci. agr. sin. 38: 1505–1513, 2005a. [In Chin.]Google Scholar
  8. He, F.H., Xi, Z.Y., Zeng, R.Z., Talukdar, A., Zhang, G.Q.: [Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS.] — Acta genet. sin. 32: 825–831, 2005b. [In Chin.]PubMedGoogle Scholar
  9. Ikehashi, H., Araki, H.: Genetics of F1 sterility in remote crosses of rice (Oryza sativa L.). — In: Rice Genetics. Pp. 119–130. International Rice Research Institute, Manila 1986.Google Scholar
  10. Jing, R., Li, X., Yi, P., Zhu, Y.: Mapping fertility restoring genes of rice WA cytopasmic male sterility using SSLP markers. — Bot. Bull. Acad. sin. 42: 167–171, 2001.Google Scholar
  11. Li, S., Yang, D.C., Zhu, Y.G.: Characterization and use of male sterility in hybrid rice breeding. — J. Integrative Plant Biol. 49: 791–804, 2007.CrossRefGoogle Scholar
  12. Lin, S.C., Yuan, L.P.: Hybrid rice breeding in China. — In: Innovative Approaches to Rice Breeding. Pp. 35–51. International Rice Research Institute, Manila 1980.Google Scholar
  13. Liu, G.F., Zeng, R.Z., Zhu, H.T., Zhang, Z.M., Ding, X.H., Zhao, F.M., Li, W.T., Zhang, G.Q.: Dynamic expression of nine QTLs for tiller number detected with single segment substitution lines in rice. — Theor. appl. Genet. 118: 443–453, 2009.PubMedCrossRefGoogle Scholar
  14. Liu, G.F., Zhang, Z.M., Zhu, H.T., Zhao, F.M., Ding, X.H., Zeng, R.Z., Li, W.T., Zhang, G.Q.: Detection of QTLs with additive effects and additive-by-environment interaction effects on panicle number in rice (Oryza sativa L.) with single-segment substitution lines. — Theor. appl. Genet. 116: 923–931, 2008.PubMedCrossRefGoogle Scholar
  15. Liu, G.F., Zhu, H.T., Liu, S., Zeng, R.Z., Zhang, Z.M., Li, W.T., Ding, X.H., Zhao, F.M., Zhang, G.Q.: Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.). — Genetics 138: 885–893, 2010.Google Scholar
  16. Long, Y.M., Zhao, L.F., Niu, B.X., Su, J., Wu, H., Chen, Y.L., Zhang, Q.Y., Guo, J.X., Zhuang, C.Q., Mei, M.T., Xia, J.X., Wang, L., Wu, H.B., Liu, Y.G.: Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. — Proc. nat. Acad. Sci. USA 105: 18871–18876, 2008.PubMedCrossRefGoogle Scholar
  17. McCouch, S.R.., Teytelman, L., Xu, Y.B., Lobos, K.B., Clare, K., Walton, M., Fu, B., Maghiran, R., Li, Z., Xing, Y., Zhang, Q., Kono, I., Yano, M., Jellstrom, R.F., Declerck, G., Schneider, D., Cartinhour, S., Ware, D., Stein, L.: Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). — DNA Res. 9: 199–207, 2002.PubMedCrossRefGoogle Scholar
  18. Mishra, G.P., Singh, R.K., Mohapatra, T., Singh, A.K., Prabhu, K.V., Zaman, F.U., Sharma, R.K.: Molecular mapping of a gene for fertility restoration of wild abortive (WA) cytoplasmic male sterility using a basmati rice restorer line. — J Plant Biochem. Biotechnol. 12: 37–42, 2003.CrossRefGoogle Scholar
  19. Oka, H.I.: Experimental studies on the origin of cultivated rice. — Genetics 78: 475–486, 1974.PubMedGoogle Scholar
  20. Panaud, O., Chen, X., McCouch, S.R.: Development of microsatellite markers and characterization of simple sequence length polymorphism (SSPL) in rice (Oryza sativa L.). — Mol. gen. Genet. 252: 597–607, 1996.PubMedGoogle Scholar
  21. Peleman, J.D., Van der Voort, J.R.: Breeding by design. — Trends Plant Sci. 8: 330–334, 2003.PubMedCrossRefGoogle Scholar
  22. Sattari, M., Kathiresan, A., Glenn, B., Gregorio, S., Virmani, S.: Comparative genetic analysis and molecular mapping of fertility restoration genes for WA, Dissi, and Gambiaca cytoplasmic male sterility systems in rice. — Euphytica 160: 305–315, 2008.CrossRefGoogle Scholar
  23. Sheeba, N.K., Viraktamath, B.C., Sivaramakrishnan, S., Gangashetti, M.G,. Khera, P., Sundaram, R.M.: Validation of molecular markers linked to fertility restorer gene (s) for WA-CMS lines of rice. — Euphytica 167: 217–227, 2009.CrossRefGoogle Scholar
  24. Sun, Y., Gu, Y.J., Zhang, H.G., Tian, S., Tang, S.Z., Gu, M.H.: [Genetic effects of 3 different male sterile cytoplasms in rice.] — J. Yangzhou Univ. 27(2): 1–4, 2006. [In Chin.]Google Scholar
  25. Tan, X.L., Vanavichit, A., Amornsilpa, S., Trangoonrung, S.: Genetic analysis of rice CMS-WA fertility restoration based on QTL mapping. — Theor. appl. Genet. 96: 994–999, 1998.CrossRefGoogle Scholar
  26. Tan, Y.P., Li, S.Q., Wang, L., Liu, G., Hu, J. Zhu, Y.G.: Genetic analysis of fertility-restorer genes in rice. — Biol. Plant. 52: 469–474, 2008.CrossRefGoogle Scholar
  27. Teng, B., Zeng, R.Z., Wang, Y.C., Liu, Z.Q., Zhang, Z.M., Zhu, H.T., Ding, X.H., Li, W.T., Zhang, G.Q.: Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryzasativa L.). — Mol. Breed. 30: 583–595, 2012.CrossRefGoogle Scholar
  28. Wang, S.K., Wu, K., Yuan, Q.B., Liu, X.Y., Liu, Z.B., Lin, X.Y., Zeng, R.Z., Zhu, H.T., Dong, G.J., Qian, Q., Zhang, G.Q., Fu X.D.: Control of grain size, shape and quality by OsSPL16 in rice. — Natur. Genet. doi:10.1038/ng.2327, 2012.Google Scholar
  29. Xi, Z.Y., He, F.H., Zeng, R.Z., Zhang, Z.M., Ding, X.H., Li, W.T., Zhang, G.Q.: Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). — Genome 49: 476–484, 2006.PubMedCrossRefGoogle Scholar
  30. Yano, M., Sasaki, T.: Genetic and molecular dissection of quantitative traits in rice. — Plant mol. Biol. 35: 145–153, 1997.PubMedCrossRefGoogle Scholar
  31. Yao, F.Y., Xu, C.G., Yu, S.B., Li, J.X., Gao, Y.J., Li, X.H., Zhang, Q.: Mapping and genetic analysis of two fertility restorer loci in the wild abortive cytoplasmic male sterility system of rice (Oryza sativa L.). — Euphytica 98: 183–187, 1997.CrossRefGoogle Scholar
  32. Yuan, L.P.: The execution and theory of developing hybrid rice. — Chin. agr. Sci. 1: 27–31, 1977.Google Scholar
  33. Zhang, G., Bharaj, T.S., Virmani, S.S., Huang, N.: Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. — Theor. appl. Genet. 94: 27–33, 1997.PubMedCrossRefGoogle Scholar
  34. Zhang, G., Lu, Y., Zhang, H., Yang, J., Liu, G.: [Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa L.) IV. Genotypes for F1 pollen sterility.] — Acta genet. sin. 21: 34–41, 1994. [In Chin.]Google Scholar
  35. Zhang, G.Q., Lu, Y.G.: [Genetic studies of the hybrid sterility in cultivated rice (Oryza sativa) II. A genic model for F1 pollen sterility.] — Acta genet. sin. 20: 222–228, 1993. [In Chin.]Google Scholar
  36. Zhang, G.Q., Zeng, R.Z., Zhang, Z.M., Ding, X.H., Li, W.T., Liu, G.M., He, F.H., Tulukdar, A., Huang, C.F., Xi, Z.Y., Qin, L.J., Shi, J.Q., Zhao, F.M., Feng, M.J., Shan, Z.L., Chen, L., Guo, X.Q., Zhu, H.T., Lu, Y.G.: The construction of a library of single segment substitution lines in rice (Oryza sativa L.). — Rice Genet. Newslett. 21: 85–87, 2004.Google Scholar
  37. Zhang, Q.Y., Liu, Y.G., Mei, M.T.: Molecular mapping of the fertility restorer gene Rf4 for WA cytoplasmic male sterility. — Acta Genet. sin. 29: 1001–1004, 2002.PubMedGoogle Scholar
  38. Zhang, Q.Y., Lu, Y.G.: [Genetic studies of the hybrid sterility in cultivated rice (Oryza sativa L.). I. Diallel analysis of the hybrid sterility among isogenic F1 sterile lines.] — Chin. J. Rice Sci. 3: 97–101, 1989. [In Chin.]Google Scholar
  39. Zhang, Y.X., Yang, J.Y., Shan, Z.L., Chen, S., Qiao, W.H., Zhu, X.Y., Xie, Q.J., Zhu, H.T., Zhang, Z.M., Zeng, R.Z., Ding, X.H., Zhang, G.Q.: Substitution mapping of QTLs for blast resistance with SSSLs in rice (Oryza sativa L.). — Euphytica 184: 141–150, 2012.CrossRefGoogle Scholar
  40. Zhu, Y.G.: [Studies on rice male sterility and its restoration.]. — In: Zhu, Y.G., Li, Y.Q., Wang, M.Q. (ed.): Biology of Male Sterility in Rice. Pp. 398–438. Wuhan University Press, Wuhan 2000. [In Chin.]Google Scholar
  41. Zhu, Y.G.: [Studies on male sterile lines of rice with different cytoplasms.]. — Acta agron. sin. 5: 29–38, 1979. [In Chin.]Google Scholar
  42. Zhuang, J.Y., Fan, Y.Y., Wu, J.L., Rao, Z.M., Xia, Y.W., Zheng, K.L.: [Maping genes for rice CMS-WA fertility restoration.] — Acta genet. sin. 28: 129–134, 2001. [In Chin.]PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Cai
    • 1
    • 2
  • Q. P. Liao
    • 1
  • Z. J. Dai
    • 1
  • H. T. Zhu
    • 1
  • R. Z. Zeng
    • 1
  • Z. M. Zhang
    • 1
  • G. -Q. Zhang
    • 1
    Email author
  1. 1.The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesSouth China Agricultural UniversityGuangzhouP.R. China
  2. 2.School of Life ScienceFu Yang Teachers CollegeFu Yang AnhuiP.R. China

Personalised recommendations