Biologia Plantarum

, Volume 57, Issue 2, pp 313–324 | Cite as

Differential ozone sensitivity interferes with cadmium stress in poplar clones

  • A. CastagnaEmail author
  • D. Di Baccio
  • R. TognettiEmail author
  • A. Ranieri
  • L. Sebastiani
Original Papers


Information on plant responses to combined ozone and cadmium stresses are scarce and limited to herbaceous species. In this research, two poplar clones (I-214 and Eridano), differently sensitive to O3, were grown for 5 weeks in pots supplied with 0, 53.5, and 160.5 mg(Cd) kg−1 (soil d.m.) and then exposed to 15-d O3 fumigation (0.06 mm3 dm−3, 5 h a day). The effects of the two stressors, alone or in combination, on Cd, Ca, Fe, and Zn accumulation in above-nad below-ground organs, photosynthesis, leaf pigments, and accumulation of H2O2 and NO were investigated. Cadmium induced a reduction in stomatal conductance and a significant accumulation of H2O2 and NO in both clones nad negatively affected the carotenoid content in I-214. Ozone, on the other hand, counteracted Cd accumulation in the above-ground organs and significantly increased the xanthophyll de-epoxidation state indicating photoinhibition in O3-treated plants. Surprisingly, O3 alone or in combination with Cd decreased H2O2 accumulation in I-214. The NO production was generally stimulated by Cd, whereas it decreased following O3 exposure in I-214. The overall data indicate that Cd and O3 induced clone specific responses. Moreover, when they were applied in combination, antagonistic rather than synergistic effects were observed.

Additional key words

carotenoids hydrogen peroxide nitric oxide net photosynthetic rate Populus spp. stomatal conductance xanthophyll cycle 





maximum photosynthetic rate




internal CO2 concentration




amino-5-methylamino-2′,7′-difluorescein diacetate


de-epoxidation index


stomatal conductance


photosynthetic photon flux density


reactive oxygen species


sodium nitroprusside




vapour pressure deficit




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlfors, R., Brosché, M., Kollist, H., Kangasjärvi, J.: Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. — Plant J. 58: 1–12, 2009.PubMedCrossRefGoogle Scholar
  2. Alcantara, E., Romera, F.J., Canete, M., Delaguardia, M.D.: Effects of heavy-metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L) plants. — J. exp. Bot. 45: 1893–1898, 1994.CrossRefGoogle Scholar
  3. Aravind, P., Prasad, M.N.V.: Zinc protects chloroplasts nad associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. — Plant Sci. 166: 1321–1327, 2004.CrossRefGoogle Scholar
  4. Ashmore, M.R.: Assessing the future global impacts of ozone on vegetation. — Plant Cell Environ. 28: 949–964, 2005.CrossRefGoogle Scholar
  5. Bagard, M., Le Thiec, D., Delacote, E., Hasenfratz-Sauder, M.P., Banvoy, J., Gérard, J., Dizengremel, P., Jolivet, Y.: Ozoneinduced changes in photosynthesis and photo-respiration of hybrid poplar in relation to the developmental stage of the leaves. — Physiol. Plant. 134: 559–574, 2008.PubMedCrossRefGoogle Scholar
  6. Balsberg Påhlsson, A.M.: Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. — Water Air Soil Pollut. 47: 287–319, 1989.CrossRefGoogle Scholar
  7. Bartha, B., Kolbert, Z., Erdei, L.: Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. — Acta biol. szegediensis 49: 9–12, 2005.Google Scholar
  8. Baudouin, E.: The language of nitric oxide signaling. — Plant Biol. 13: 233–242, 2011.PubMedCrossRefGoogle Scholar
  9. Beligni, M.V., Lamattina, L.: Nitric oxide in plants: the history is just beginning. — Plant Cell Environ. 24: 267–278, 2001.CrossRefGoogle Scholar
  10. Bytnerowicz, A., Omasa, K., Paoletti, E.: Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. — Environ. Pollut. 147: 438–445, 2007.PubMedCrossRefGoogle Scholar
  11. Castagna, A., Ranieri, A.: Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. — Environ. Pollut. 157: 1461–1469, 2009.PubMedCrossRefGoogle Scholar
  12. Castagna, A., Nali, C., Ciompi, S., Lorenzini, G., Soldatini, G.F., Ranieri, A.: Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo) plants. — New Phytol. 152: 223–229, 2001.CrossRefGoogle Scholar
  13. Clemens, S.: Molecular mechanisms of plant metal homeostasis and tolerance. — Planta 212: 475–486, 2001.PubMedCrossRefGoogle Scholar
  14. Cocozza, C., Minnocci, A., Tognetti, R., Iori, V., Zacchini, M., Scarascia-Mugnozza, G.: Distribution and concentration of cadmium in root tissue of Populus alba determined by scanning electron microscopy and energy-dispersive X-ray microanalysis. — Forest 1: 96–103, 2008.Google Scholar
  15. Cocozza, C., Maiuro, L., Tognetti R.: Mapping cadmium distribution in roots of Salicaceae through scanning electron microscopy with x-ray microanalysis. — Forest 4: 113–120, 2011.Google Scholar
  16. Czuba, M., Ormrod, D.P.: Effects of cadmium and zinc on ozoneinduced phytotoxicity in cress and lettuce. — Can. J. Bot. 52: 645–649, 1974.CrossRefGoogle Scholar
  17. Das, P., Samantaray, S., Rout, G.R.: Studies on cadmium toxicity in plants: a review. — Environ. Pollut. 98: 29–36, 1997.PubMedCrossRefGoogle Scholar
  18. Demmig-Adams, B., Adams, W.W.: The role of xanthophylls cycle carotenoids in the protection of photosynthesis. — Trends Plant Sci. 1: 21–26, 1996.CrossRefGoogle Scholar
  19. Diara, C., Castagna, A., Baldan, B., Mensuali Sodi, A., Sahr, T., Langebartels, C., Sebastiani, L., Ranieri, A.: Different kinetics and extent of signalling molecules production modulate the ozone sensitivity of hybrid poplar clones: the role of H2O2, ethylene and salicylic acid. — New Phytol. 168: 351–364, 2005.PubMedCrossRefGoogle Scholar
  20. Di Baccio, D., Castagna, A., Paoletti, E., Sebastiani, L., Ranieri, A.: Could the differences in O3 sensitivity between two poplar clones be related to a difference in antioxidant defense nad secondary metabolic response to O3 influx? — Tree Physiol. 28: 1761–1772, 2008.PubMedCrossRefGoogle Scholar
  21. Di Baccio, D., Tognetti, R., Minnocci, A., Sebastiani, L.: Responses of the Populus × euramericana clone I-214 to excess zinc: carbon assimilation, structural modifications, metal distribution and cellular localization. — Environ. exp. Bot. 67: 153–163, 2009.CrossRefGoogle Scholar
  22. Di Baccio, D., Ederli, L., Marabottini, R., Badiani, M., Francini, A., Nali, C., Antonelli, M., Santangelo, E., Sebastiani, L., Pasqualini, S.: Similar foliar lesions but opposite hormonal patterns in a tomato mutant impaired in ethylene perception and its near isogenic wild type challenged with ozone. — Environ. exp. Bot. 75: 286–297, 2011a.CrossRefGoogle Scholar
  23. Di Baccio, D., Galla, G., Bracci T., Andreucci A., Barcaccia G., Tognetti R., Sebastiani L.: Transcriptome analyses of Populus × euramericana clone I-214 leaves exposed to excess zinc. — Tree Physiol. 31: 1293–1308, 2011b.PubMedCrossRefGoogle Scholar
  24. Di Baccio, D., Minnocci, A., Sebastiani L.: Leaf structural modifications in Populus × euramericana subjected to Zn excess. — Biol. Plant. 54: 502–508, 2010.CrossRefGoogle Scholar
  25. Di Cagno, R., Andreucci, A., Guidi, L., Stefani, A., Soldatini, G.F.: Does the pre-treatment of sunflower seedlings with Cd(II) influence the effects of ozone on photosynthesis? — In: Garab, G. (ed.): Photosynthesis: Mechanisms and Effects. Pp. 2729–2732. Kluwer Academic Publisher, Dordrecht 1999.Google Scholar
  26. Di Cagno, R., Guidi, L., De Gara, L., Soldatini, G.F.: Combined cadmium and ozone treatments affect photosynthesis nad ascorbate-dependent defences in sunflower. — New Phytol. 151: 627–636, 2001.CrossRefGoogle Scholar
  27. Dickmann, D.I.: Photosynthesis and respiration by developing leaves of cottonwood (Populus deltoides Bartr.). — Bot. Gaz. 132: 253–259, 1971.CrossRefGoogle Scholar
  28. Dong, J., Wu, F.B., Zhang, G.P.: Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). — Chemosphere 64: 1659–1666, 2006.PubMedCrossRefGoogle Scholar
  29. Ederli, L., Reale, L., Ferranti, F., Pasqualini, S.: Responses induced by high concentration of cadmium in Phragmites australis roots. — Physiol. Plant. 121: 66–74, 2004.PubMedCrossRefGoogle Scholar
  30. Elvira, S., Alonso, R., Castello, F.J., Gimeno, B.S.: On the responses of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure. — New Phytol. 138: 419–432, 1998.CrossRefGoogle Scholar
  31. Gaudet, M., Pietrini, F., Beritognolo, I., Iori, V., Zacchini, M., Massacci, A., Scarascia Mugnozza, G., Sabatti, M.: Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. — Tree Physiol. 31: 1309–1318, 2011.PubMedCrossRefGoogle Scholar
  32. Gielen, B., Low, M., Deckmyn, G., Metzger, U., Franck, F., Heerdt, C., Matyssek R., Valcke, R., Ceulemans, R.: Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. — J. exp. Bot. 58: 785–795, 2007.PubMedCrossRefGoogle Scholar
  33. Giovannelli, A., Deslauriers, A., Fragnelli, G., Scaletti, L., Castro, G., Rossi, S., Crivellaro, A.: Evaluation of drought response of two poplar clones (Populus × canadensis Mönch ‘I-214’ and P. deltoids Marsh. ‘Dvina’) through high resolution analysis of stem growth. — J. exp. Bot. 58: 2673–2683, 2007.PubMedCrossRefGoogle Scholar
  34. Gonçalves, J.F., Nicoloso, F.T., Becker, A.G., Pereira, L.B., Tabaldi, L.A., Cargnelutti, D., De Pelegrin, C.M.G., Dressler, V.L., Da Rocha, J.B.T., Schetinger, M.R.C.: Photosynthetic pigments content, δ-aminolevulinic acid dehydratase and acid phosphatase activities and mineral nutrients concentration in cadmium-exposed Cucumis sativus L. — Biologia 64: 310–318, 2009.CrossRefGoogle Scholar
  35. Gould, K.S., Lamotte, O., Klinguer, A., Pugin, A., Wedehenne, D.: Nitric oxide production in tobacco leaf cells: a generalized stress response? — Plant Cell Environ. 26: 1851–1862, 2003.CrossRefGoogle Scholar
  36. Hall, J.L., Williams, L.E.: Transition metal transporters in plants. — J. exp. Bot. 54: 2601–2613, 2003.PubMedCrossRefGoogle Scholar
  37. He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K., Jiang, X., Liu, T., Polle, A., Liang, Z., Luo, Z.B.: Net cadmium flux nad accumulation reveal tissue-specific oxidative stress nad detoxification in Populus × canescens. — Physiol. Plant. 143: 50–63, 2011.PubMedCrossRefGoogle Scholar
  38. Iannone, M.F., Rosales, E.P., Groppa, M.D., Benavides, M.P.: Reactive oxygen species formation and cell death in catalasedeficient tobacco leaf disks exposed to cadmium. — Protoplasma 245: 15–27, 2010.PubMedCrossRefGoogle Scholar
  39. Kangasjärvi, J., Jaspers, P., Kollist, H.: Signalling and cell death in ozone-exposed plants. — Plant Cell Environ. 28: 1021–1036, 2005.CrossRefGoogle Scholar
  40. Kieffer, P., Schroder, P., Dommes, J., Hoffmann, L., Renaut, J., Hausman, J.F.: Proteomic and enzymatic response of poplar to cadmium stress. — J. Proteomics 72: 379–396, 2009.PubMedCrossRefGoogle Scholar
  41. Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., Hirata, Y., Nagano, T.: Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. — Anal. Chem. 70: 2446–2453, 1998.PubMedCrossRefGoogle Scholar
  42. Lakanen, E., Erviö, R.: A comparison of eight extractants for the determination of plant available micronutrients in soils. — Acta agron. fenn. 123: 223–232, 1971.Google Scholar
  43. Larbi, A., Morales, F., Abadía, A., Gogorcena, Y., Lucena, J.J., Abadía, J.: Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. — Funct. Plant Biol. 29: 1453–1464, 2002.CrossRefGoogle Scholar
  44. Li, Y., Li, C., Zheng, Y., Wu, G., Wuyun, T., Xu, H., He, X., Jiang, G.: Cadmium pollution enhanced ozone damage to winter wheat: Biochemical and physiological evidences. — J. environ. Sci. 23: 1–11, 2011.CrossRefGoogle Scholar
  45. López-Climent, M.F., Arbona V., Pérez-Clemente, R.M., Gómez-Cadenas, A.: Effects of cadmium on gas exchange nad phytohormone contents in citrus. — Biol. Plant. 55: 187–190, 2011.CrossRefGoogle Scholar
  46. López-Millán, A.F., Sagardoy, R., Solanas, M., Abadía, A., Abadía, J.: Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. — Environ. exp. Bot. 65: 376–385, 2009.CrossRefGoogle Scholar
  47. Marmiroli, M., Pietrini, F., Maestri, E., Zacchini, M., Marmiroli, N., Massacci, A.: Growth, physiological and molecular traits in the Salicaceae trees investigated for phytoremediation of heavy metals and organics. — Tree Physiol. 31: 1319–1334, 2011.PubMedCrossRefGoogle Scholar
  48. Matyssek, R., Sandermann, H.: Impact of ozone on trees: an ecophysiological perspective. — Progress Bot. 64: 349–404, 2003.CrossRefGoogle Scholar
  49. Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T.: Hydrogen peroxide and nitric oxide as signalling molecules in plants. — J. exp. Bot. 53: 1237–1247, 2002.PubMedCrossRefGoogle Scholar
  50. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., Forestier, C.: Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. — Plant J. 32: 539–548, 2002.PubMedCrossRefGoogle Scholar
  51. Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Ferretti, M., Massacci, A.: Spatial distribution of cadmium in leaves nad its impact on photosynthesis: examples of different strategies in willow and poplar clones. — Plant Biol. 12: 355–363, 2010a.PubMedCrossRefGoogle Scholar
  52. Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Bianconi, D., Massacci, A.: Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass nad cadmium content analyses. — Int. J. Phytorem. 12: 105–120, 2010b.CrossRefGoogle Scholar
  53. Ranieri, A., Castagna, A., Scebba, F., Careri, M., Zagnoni, I., Predieri, Pagliari, M., Di Toppi, L.S..: Oxidative stress nad phytochelatin characterisation in bread wheat exposed to cadmium excess. — Plant Physiol. Biochem. 43: 45–54, 2005.PubMedCrossRefGoogle Scholar
  54. Ranieri, A., Serini, R., Castagna, A., Nali, C., Baldan, B., Lorenzini, G., Soldatini, G.F.: Differential sensitivity to ozone in two poplar clones. Analysis of thylakoid pigment-protein complexes. — Physiol. Plant. 110: 181–188, 2000.CrossRefGoogle Scholar
  55. Ranieri, A., Castagna, A., Padu, E., Moldau, H., Rahi, M., Soldatini, G.F.: The decay of O3 through direct reaction with cell wall ascorbate is not sufficient to explain the different degrees of O3-sensitivity in two poplar clones. — J. Plant Physiol. 150: 250–255, 1999.CrossRefGoogle Scholar
  56. Renaut, J., Bohler, S., Hausman, J.-F., Hoffmann, L., Sergeant, K., Ahsan, N., Jolivet, Y., Dizengremel, P.: The impact of atmospheric composition on plants: a case study of ozone nad poplar. — Mass Spectrometry Rev. 28: 495–516, 2009.CrossRefGoogle Scholar
  57. Rivetta A., Negrini, N., Cocucci M.: Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. — Plant Cell Environ. 20: 600–608, 1997.CrossRefGoogle Scholar
  58. Rodríguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gómez, M., Del Río, L.A., Sandalio, L.M.: Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots: imaging of reactive oxygen species nad nitric oxide accumulation in vivo. — Plant Cell Environ. 29: 1532–1544, 2006.PubMedCrossRefGoogle Scholar
  59. Romero-Puertas, M.C., Rodríguez-Serrano, M., Corpas, F.J., Gómez, M., del Río, L.A., Sandalio, L.M.: Cd-induced subcellular accumulation of O2 ·− and H2O2 in pea leaves. — Plant Cell Environ. 27: 1122–1134, 2004.CrossRefGoogle Scholar
  60. Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., Del Rio, L.A.: Cadmium-induced changes in the growth and oxidative metabolism of pea plants. — J. exp. Bot. 52: 2115–2126, 2001.PubMedGoogle Scholar
  61. Sandermann, H., Ernst, D., Heller, W., Langebartels, C.: Ozone: an abiotic elicitor of plant defence reactions. — Trends Plant Sci. 3: 47–50, 1998.CrossRefGoogle Scholar
  62. Sanità di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.CrossRefGoogle Scholar
  63. Scebba, F., Arduini, L., Ercoli, L., Sebastiani, L.: Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. — Biol. Plant. 50: 688–692, 2006.CrossRefGoogle Scholar
  64. Schützendübel, A., Nikolova, P., Rudolf, C., Polle, A.: Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. — Plant Physiol. Biochem. 40: 577–584, 2002.CrossRefGoogle Scholar
  65. Sebastiani, L., Scebba, F., Tognetti, R.: Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. — Environ. exp. Bot. 52: 79–88, 2004.CrossRefGoogle Scholar
  66. Tognetti, R., Sebastiani, L., Minnocci, A.: Gas exchange nad foliage characteristics of two poplar clones grown in soil amended with industrial waste. — Tree Physiol. 24: 75–82, 2004.PubMedCrossRefGoogle Scholar
  67. Tognetti, R., Massacci, A., Scarascia Mugnozza, G.: Editorial: Fifth International Poplar Symposium: ‘Poplars and willows: from research models to multipurpose trees for a bio-based society’. — Tree Physiol. 31: 1289–1292, 2011.PubMedCrossRefGoogle Scholar
  68. Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., Ishikawa, S.: Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. — J. exp. Bot. 60: 2677–2688, 2009.PubMedCrossRefGoogle Scholar
  69. Van Assche, F., Clijsters, H.: Effects of metals on enzyme activity in plants. Plant Cell Environ. 13: 195–196, 1990.CrossRefGoogle Scholar
  70. Wittig, V.E., Ainsworth, E.A., Long, S.P.: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A metaanalytic review of the last 3 decades of experiments. — Plant Cell Environ. 30: 1150–1162, 2007.PubMedCrossRefGoogle Scholar
  71. Wendehenne, D., Durner, J., Klessig, D.F.: Nitric oxide: a new player in plant signalling and defence responses. — Curr. Opin. Plant Biol. 7: 449–455, 2004.PubMedCrossRefGoogle Scholar
  72. Wójcik, M., Tukiendorf, A.: Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. — Biol. Plant. 55: 125–132, 2011.CrossRefGoogle Scholar
  73. Wu, L.: Colonisation and establishment of plants in contaminated sites. — In: Shaw, A.J. (ed.): Heavy Metal Tolerance in Plants: Evolutionary Aspects. Pp. 269–284. CRC Press, Boca Raton 1990.Google Scholar
  74. Yang, X., Baligar, V.C., Martrns, D.C., Clark, R.B.: Cadmium effects on influx and transport of mineral nutrients in plant species. — J. Plant Nutr. 19: 643–656, 1996.CrossRefGoogle Scholar
  75. Zacchini, M., Iori, V., Scarascia Mugnozza, G., Pietrini, F., Massacci, A.: Cadmium accumulation and tolerance in Populus nigra and Salix alba. — Biol. Plant. 55: 383–386, 2011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Dipartimento di Biologia delle Piante AgrarieUniversità di PisaPisaItaly
  2. 2.BioLabs, ISVScuola Superiore Sant’AnnaPisaItaly
  3. 3.Dipartimento di Bioscienze e TerritorioUniversità degli Studi del MolisePescheItaly

Personalised recommendations