Biologia Plantarum

, Volume 57, Issue 2, pp 281–290 | Cite as

Wheat truncated hemoglobin interacts with photosystem I PSK-I subunit and photosystem II subunit PsbS1

  • D. Y. Kim
  • M. J. Hong
  • Y. J. Lee
  • M. B. Lee
  • Y. W. Seo
Original Papers


Recently, the truncated hemoglobin gene (trHb) was discovered in plant species, however, its role has not yet been determined. In this study, the gene expression of wheat trHb (TatrHb) was analyzed under various biotic and abiotic stresses. TatrHb transcript levels increased in NaCl-treated leaves and gibberellic acid (GA3)-treated roots. In addition, sodium nitroprusside (SNP), a nitric oxide donor, induced an increase in TatrHb transcript levels in roots and leaves. A yeast two-hybrid assay (YIIH) was used to screen a hypoxia-treated wheat seedling library with the goal of determining the putative function of TatrHb. In this YIIH assay, photosynthesis-related genes that showed high homology to the Hordeum vulgare chloroplast photosystem I PSK-I subunit and Zea mays photosystem II subunit PsbS1 were detected and their interactions with TatrHb were confirmed. Subcellular localization of a TatrHb-green fluorescent protein (GFP) fusion protein and bimolecular fluorescence complementation (BiFC) assay suggested that TatrHb is involved in photosynthesis. The TatrHb-GFP fusion protein was localized in the plastids and the yellow fluorescent protein signal indicated that the TatrHb protein interacted with PSK-I and PsbS1 in the chloroplast.

Additional key words

chloroplast gibberellic acid NaCl Triticum aestivum nitric oxide photosynthesis YIIH assay 



abscisic acid


bimolecular fluorescence complementation


2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxidase


gibberellic acid


green fluorescent protein




methyl jasmonate


NO synthase


O-nitrophenyl β-D-galactopyranoside


polyethylene glycol


reverse transcriptase-polymerase chain reaction


salicylic acid


sodium nitroprusside


Triticum aestivum L. truncated hemoglobin


yeast 2-hybrid


yellow fluorescent protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, S.H., Shon, K.H., Choi, H.W., Hwang, I.S., Lee, S.C., Hwang, B.K.: Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. — Planta 228: 61–78, 2008.PubMedCrossRefGoogle Scholar
  2. Andersson, C.R., Jensen, E.O., Llewellyn, D.J., Dennis, E.S., Peacock, W.J.: A new Hb gene from soybean: a role for Hb in all plants. — Proc. nat. Acad. Sci. USA 93: 5682–5687, 1996.CrossRefGoogle Scholar
  3. Appleby, C.A.: The origin and functions of hemoglobin in plants. — Sci. Progr. 76: 365–398, 1992.Google Scholar
  4. Arredondo, P.R., Hargrove, M.S., Moran, J.F., Sarath, G., Klucas, R.V.: Plant hemoglobins. — Plant Physiol. 118: 1121–1125, 1998.CrossRefGoogle Scholar
  5. Arredondo, P.R., Hargrove, M.S., Sarath, G., Moran, J.F., Lohrman, J., Olson, J.S., Klucas, R.V.: Rice hemoglobins: gene cloning, analysis and oxygen-binding kinetics of a recombinant protein synthesized in Escherichia coli. — Plant Physiol. 115: 1259–1266, 1997.CrossRefGoogle Scholar
  6. Bergantino, E., Segalla, A., Brunetta, A., Teardo, E., Rigoni, F., Giacometti, G.M., Szabo, I.: Light- and pH-dependent structural changes in the PsbS subunit of photosystem II. — Proc. nat. Acad. Sci. USA 100: 15265–15270, 2003.PubMedCrossRefGoogle Scholar
  7. Besson-Bard, A., Puginm, A., Wendehenne, D.: New insights into nitric oxide signaling in plants. — Annu. Rev. Plant Biol. 59: 21–39, 2008.PubMedCrossRefGoogle Scholar
  8. Bogusz, D., Appleby, C.A., Landsmann, J., Dennis, E.S., Trinick, M.J., Peacock, W.J.: Functioning hemoglobin in nonnodulating plants. — Nature 131: 178–180, 1988.CrossRefGoogle Scholar
  9. Bolognesi, M., Bordo, D., Rizzi, M., Tarricone, C., Ascenzi, P.: Non vertebrate Hbs: structural bases for reactivity. — Prog. Biophys. mol. Biol. 68: 29–68, 1997.PubMedCrossRefGoogle Scholar
  10. Chen, H., Nelson, R.S., Sherwood, J.L.: Enhanced recovery of transformants of Agrobacterium tumefaciens after freezethaw transformation and drug selection. — Biotechnology 16: 664–670, 1994.Google Scholar
  11. Couture, M., Chamberland, H., St. Pierre, B., Lafontaine, J., Guertin, M.: Nuclear gene encoding chloroplast Hbs in the unicellular green alga Chlamydomonas eugametos. — Mol. gen. Genet. 243: 185–197, 1994.PubMedGoogle Scholar
  12. Crawford, N.M., Galli, M., Tischner, R., Heimer, Y.M., Okamoto, M., Mack, A.: Plant nitric oxide synthase: back to square one. — Trends Plant. Sci. 11: 526–527, 2006.CrossRefGoogle Scholar
  13. Gould, K.S., Lamotte, O., Klinguer, A., Pugi, A., Wendehenne, D.: Nitric oxide production in tobacco leaf cells: a generalized stress response? — Plant Cell Environ. 26: 1851–1862, 2003.CrossRefGoogle Scholar
  14. Hill, D.R., Belbin, T.J., Thorsteinsson, M.V., Bassam, D., Brass, S., Ernst, A., Böger, P., Paerl, H., Mulligan, M.E., Potts, M.: GlbN (Cyanoglobin) is a peripheral membrane protein that is restricted to certain Nostoc spp. — J. Bacteriol. 178: 6587–6598, 1996.PubMedGoogle Scholar
  15. Hong, M.J., Kim, D.Y., Lee, T.G., Jeon, W.B., Seo, Y.W.: Functional characterization of pectin methylesterase inhibitor (PMEI) in wheat. — Gen. Genet. Syst. 85: 97–106, 2010.CrossRefGoogle Scholar
  16. Hoy, J.A., Hargrove M. S.: The structure and function of plant hemoglobins. — Plant Physiol. Biochem. 46: 371–379, 2008.PubMedCrossRefGoogle Scholar
  17. Jacobsen-Lyon, K., Jensen, E.O., Jorgensen, J.E., Marcker, K.A., Peacock, W.J., Dennis, E.S.: Symbiotic and nonsymbiotic Hb genes of Casuarina glauca. — Plant Cell 7: 213–223, 1995.PubMedGoogle Scholar
  18. Jung, J.H., Hong, M.J., Kim, D.Y., Kim, J.Y., Heo, H.Y., Kim, T.H., Jang, C.S., Seo, Y.W.: Structural and expressional divergence of genes encoding O-methyltransferase in wheat. — Genome 51: 856–869, 2008.PubMedCrossRefGoogle Scholar
  19. Larsen, K.: Molecular cloning and characterization of cDNAs encoding hemoglobin from wheat (Triticum aestivum) and potato (Solanum tuberosum). — BBA 1621: 299–305, 2003.PubMedCrossRefGoogle Scholar
  20. Lee, H., Kim, H., An, C.S.: Cloning and expression analysis of 2-on-2 Hb from soybean. — J. Plant Biol. 47: 92–98, 2004.CrossRefGoogle Scholar
  21. Marchler-Bauer, A., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., et al.: CDD: specific functional annotation with the Conserved Domain Database. — Nucl. Acids Res. 37: 205–210, 2009.CrossRefGoogle Scholar
  22. Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M.: Truncated Hb HbN protects Mycobacterium bovis from nitric oxide. — Proc. nat. Acad. Sci. USA 99: 5902–5907, 2002.PubMedCrossRefGoogle Scholar
  23. Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., Dikshit, K.L.: Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis hemoglobin, HbN in Escherichia coli. — Mol. Microbiol. 45: 1303–1314, 2002.PubMedCrossRefGoogle Scholar
  24. Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., et al.: A novel two-over-two -helical sandwich fold is characteristic of the truncated Hb family. — EMBO J. 19: 2424–2434, 2000.PubMedCrossRefGoogle Scholar
  25. Qiao, W., Xiao, S., Yu, L., Fan, L.M.: Expression of a rice gene OsNOA1 re-establishes nitric oxide synthesis and stressrelated gene expression for salt tolerance in Arabidopsis nitricoxide-associated 1 mutant Atnoa1. — Environ. exp. Bot. 65: 90–98, 2009CrossRefGoogle Scholar
  26. Sakamoto, A., Sakurao, S.H., Fukunaga, K., Matsubara, T., Ueda-Hashimoto, M., Tsukamoto, S., Takahashi, M., Morikawa, H.: Three distinct Arabidopsis hemoglobins exhibit peroxidase-like activity and differentially mediate nitritedependent protein nitration. — FEBS Lett. 572: 27–32, 2004.PubMedCrossRefGoogle Scholar
  27. Taylor, E.R., Nie, X.Z., MacGregor, A.W., Hill, R.D.: A cereal hemoglobin gene is expressed in seed and root tissues under anaerobic conditions. — Plant. mol. Biol. 24: 853–862, 1994.PubMedCrossRefGoogle Scholar
  28. Thorsteinsson, M.V., Bevan, D.R., Potts, M.: A cyanobacterial hemoglobin with unusual ligand binding kinetics and stability properties. — Biochemistry 38: 2117–2126, 1999.PubMedCrossRefGoogle Scholar
  29. Trent, J.T., Hargrove, M.S.: A ubiquitously expressed human hexacoordinate hemoglobin. — J. Biochem. 277: 19538–19545, 2002.Google Scholar
  30. Trevaskis, B., Watts, R.A., Andersson, S.R., Llewellyn, D.J., Hargrove, M.S., Olson, J.S., Dennis, E.S., Peacock W.J.: Two Hb genes in Arabidopsis thaliana: the evolutionary origins of legHbs. — Proc. nat. Acad. Sci. USA 94: 12230–12234, 1997.PubMedCrossRefGoogle Scholar
  31. Vuletich, D.A., Lecomte J.T.: A phylogenetic and structural analysis of truncated hemoglobins. — J. mol. Evol. 62: 196–210, 2006.PubMedCrossRefGoogle Scholar
  32. Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., Kudla, J.: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. — Plant J. 40: 428–438, 2004.PubMedCrossRefGoogle Scholar
  33. Watts, R.A., Hunt, P.W., Hvitved, A.N., Hargrove, M.S., Peacock, W.J., Dennis, E.S.: A Hb from plants homologous to truncated Hbs of microorganisms. — Proc. nat. Acad. Sci. USA 98: 10119–10124, 2001.PubMedCrossRefGoogle Scholar
  34. Weber, R.E., Vinogradov, S.N.: Nonvertebrate Hbs: functions and molecular adaptations. — Physiol. Rev. 81: 569–628, 2001.PubMedGoogle Scholar
  35. Wendehenne, D., Durner, J., Klessig, D.F.: Nitric oxide: a new player in plant signalling and defense responses. — Curr. Opin. Plant Biol. 7: 449–455, 2004.PubMedCrossRefGoogle Scholar
  36. Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M.: Truncated Hbs: a new family of Hbs widely distributed in bacteria, unicellular eukaryotes, and plants. — J. biol. Chem. 277: 871–874, 2002.PubMedCrossRefGoogle Scholar
  37. Zhang, B., Wang, H. Q., Liu, B. L., Liu, J., Wang, X., Liu Q., Zhang H. G.: A potato NOA gene increased salinity tolerance in Arabidopsis thaliana. — Afr. J. Biotechnol. 9: 5869–5878, 2010.Google Scholar
  38. Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., Zhang, W.: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. — Planta 224: 545–555, 2006.PubMedCrossRefGoogle Scholar
  39. Zhao, M.G., Tian, Q.Y., Zhang, W.H.: Nitric oxide synthasedependent nitric oxide production is associated with salt tolerance in Arabidopsis. — Plant Physiol. 144: 206–217, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  • D. Y. Kim
    • 1
  • M. J. Hong
    • 1
  • Y. J. Lee
    • 1
  • M. B. Lee
    • 1
  • Y. W. Seo
    • 1
  1. 1.College of Life Science and BiotechnologyKorea UniversitySeoulKorea

Personalised recommendations