Biologia Plantarum

, Volume 57, Issue 1, pp 56–62

Molecular cloning and expression analysis of a new stress-related AREB gene from Arachis hypogaea

  • L. Hong
  • B. Hu
  • X. Liu
  • C. Y. He
  • Y. Yao
  • X. L. Li
  • L. Li
Article

Abstract

An AREB gene, designated as AhAREB1, was cloned from peanut (Arachis hypogaea L.). The gene contains a 1 338-bp open reading frame that encodes a putative protein of 445 amino acids. The corresponding genomic DNA containing four exons and three introns was isolated and analyzed. An upstream 1 060-bp DNA promoter fragment of the AhAREB1 gene was also amplified from peanut genomic DNA. Multiple sequence alignment of the deduced amino acids of AREB showed that the AhAREB1 protein shares high sequence homology with GmAREB1, S1AREB and ABF2. Quantitative real-time PCR analysis showed that AhAREB1 was induced by polyethylene glycol, NaCl, gibberellic acid, abscisic acid and salicylic acid. The cloning and characterization of the AhAREB1 gene will be useful for further studies establishing the biological role of AhAREB1 in plants.

Additional key words

ABA AhAREB1 GA3 peanut PEG SA water stress 

Abbreviations

ABA

abscisic acid

ABF

ABRE binding factor

ABRE

ABA response element

AREB

ABA-response element binding protein

bZIP

basic leucine zipper

CaMK

calmodulin-dependent protein kinase

CK

casein kinase

GA3

gibberellic acid

NCED

9-cis-epoxycarotenoid dioxygenase

ORF

open reading frame

PEG

polyethylene glycol

PKC

protein kinase C

SA

salicylic acid

W-BOX

WRKY binding site

WRKY

superfamily of plant transcription factors

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. - Plant Cell 15: 63–78, 2003.PubMedCrossRefGoogle Scholar
  2. Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X., Zhu, J.K.: A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. - J. biol. Chem. 281: 37636–37645, 2006.PubMedCrossRefGoogle Scholar
  3. Alos, E., Roca, M., Iglesias, D.J., Minguez-Mosquera, M.I., Damasceno, C.M., Thannhauser, T.W., Rose, J.K., Talon, M., Cercos, M.: An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. - Plant Physiol. 147: 1300–1315, 2008.PubMedCrossRefGoogle Scholar
  4. Bensmihen, S., Rippa, S., Lambert, G., Jublot, D., Pautot, V., Granier, F., Giraudat, J., Parcy, F.: The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. - Plant Cell 14: 1391–1403, 2002.PubMedCrossRefGoogle Scholar
  5. Chandler, P.M., Robertson, M.: Gene expression regulated by abscisic acid and its relation to stress tolerance. - Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 113–141, 1994.CrossRefGoogle Scholar
  6. Chen, K.G., An, Y.Q.: Transcriptional responses to gibberellin and abscisic acid in barley aleurone. - J. Integr. Plant Biol. 48: 591–612, 2006.CrossRefGoogle Scholar
  7. Choi, H., Hong, J., Ha, J., Kang, J., Kim, S.Y.: ABFs, a family of ABA-responsive element binding factors. - J. biol. Chem. 275: 1723–1730, 2000.PubMedCrossRefGoogle Scholar
  8. Correa, L.G., Riano-Pachon, D.M., Schrago, C.G., Dos Santos, R.V., Mueller-Roeber, B., Vincentz, M.: The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. - PLoS One 3: e2944, 2008.PubMedCrossRefGoogle Scholar
  9. Eulgem, T., Somssich, I.E.: Networks of WRKY transcription factors in defense signaling. - Curr. Opin. Plant Biol. 10: 366–371, 2007.PubMedCrossRefGoogle Scholar
  10. Finkelstein, R.R., Gampala, S.S., Rock, C.D.: Abscisic acid signaling in seeds and seedlings. - Plant Cell 14 (Suppl.): S15–S45, 2002.PubMedGoogle Scholar
  11. Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. - Plant Cell 17: 3470–3488, 2005.PubMedCrossRefGoogle Scholar
  12. Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. - Proc. nat. Acad. Sci. USA 103: 1988–1993, 2006.PubMedCrossRefGoogle Scholar
  13. Gao, Q.M., Venugopal, S., Navarre, D., Kachroo, A.: Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. - Plant Physiol. 155: 464–476, 2011.PubMedCrossRefGoogle Scholar
  14. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., Weisshaar, B.: Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. - Plant mol. Biol. 57: 155–171, 2005.PubMedCrossRefGoogle Scholar
  15. Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T.: Plant cis-acting regulatory DNA elements (PLACE) database: 1999. - Nucl. Acids Res. 27: 297–300, 1999.PubMedCrossRefGoogle Scholar
  16. Hossain, M.A., Cho, J.I., Han, M., Ahn, C.H., Jeon, J.S., An, G., Park, P.B.: The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. - J. Plant Physiol. 167: 1512–1520, 2010.PubMedCrossRefGoogle Scholar
  17. Hsieh, T.H., Li, C.W., Su, R.C., Cheng, C.P., Sanjaya Tsai, Y.C., Chan, M.T.: A tomato bZIP transcription factor, S1AREB, is involved in water deficit and salt stress response. - Planta 231: 1459–1473, 2010.PubMedCrossRefGoogle Scholar
  18. Huang, X.S., Liu, J.H., Chen, X.J.: Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. - BMC Plant Biol. 10: 230, 2010.PubMedCrossRefGoogle Scholar
  19. Hussain, S.S., Iqbal, M.T., Arif, M.A., Amjad, M.: Beyond osmolytes and transcription factors: drought tolerance in plants via protective proteins and aquaporins. - Biol. Plant. 55: 401–413, 2011.CrossRefGoogle Scholar
  20. Jung, C., Seo, J.S., Han, S.W., Koo, Y.J., Kim, C.H., Song, S.I., Nahm, B.H., Choi, Y.D., Cheong, J.J.: Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. - Plant Physiol. 146: 623–635, 2008.PubMedCrossRefGoogle Scholar
  21. Kim, S., Kang, J.Y., Cho, D.I., Park, J.H., Kim, S.Y.: ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. - Plant J. 40: 75–87, 2004.PubMedCrossRefGoogle Scholar
  22. Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., Hattori, T.: Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. - Plant J. 44: 939–949, 2005.PubMedCrossRefGoogle Scholar
  23. Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., Rombauts, S.: PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. - Nucl. Acids Res. 30: 325–327, 2002.PubMedCrossRefGoogle Scholar
  24. Liang, J., Yang, L., Chen, X., Li, L., Guo, D., Li, H., Zhang, B.: Cloning and characterization of the promoter of the 9-cis-epoxycarotenoid dioxygenase gene in Arachis hypogaea L. - Biosci. Biotechnol. Biochem. 73: 2103–2106, 2009.PubMedCrossRefGoogle Scholar
  25. Liu, D.C., He, L.G., Wang, H.L., Xu, M., Sun, Z.H.: Expression profiles of PtrLOS2 encoding an enolase required for cold-responsive gene transcription from trifoliate orange. - Biol. Plant. 55: 35–42, 2011.CrossRefGoogle Scholar
  26. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. - Methods 25: 402–408, 2001.PubMedCrossRefGoogle Scholar
  27. Peng, J.: Gibberellin and jasmonate crosstalk during stamen development. - J. Integr. Plant Biol. 51: 1064–1070, 2009.PubMedCrossRefGoogle Scholar
  28. Rushton, P.J., Reinstadler, A., Lipka, V., Lippok, B., Somssich, I.E.: Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. - Plant Cell 14: 749–762, 2002.PubMedCrossRefGoogle Scholar
  29. Seki, M., Umezawa, T., Urano, K., Shinozaki, K.: Regulatory metabolic networks in drought stress responses. - Curr. Opin. Plant Biol. 10: 296–302, 2007.PubMedCrossRefGoogle Scholar
  30. Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A., Lukyanov, S.A.: An improved PCR method for walking in uncloned genomic DNA. - Nucl. Acids Res. 23: 1087–1088, 1995.PubMedCrossRefGoogle Scholar
  31. Solano, R., Nieto, C., Avila, J., Canas, L., Diaz, I., Paz-Ares, J.: Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. - EMBO J. 14: 1773–1784, 1995.PubMedGoogle Scholar
  32. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. - Curr. Opin. Biotechnol. 17: 113–122, 2006.PubMedCrossRefGoogle Scholar
  33. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. - Proc. nat. Acad. Sci. USA 97: 11632–11637, 2000.PubMedCrossRefGoogle Scholar
  34. Wan, X., Li, L.: Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9-cis-epoxycarotenoid dioxygenase in Arachis hygogaea L. - DNA Seqencing 16: 217–223, 2005.Google Scholar
  35. Wan, X.R., Li, L.: Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. - Biochem. biophys. Res. Commun. 347: 1030–1038, 2006.PubMedCrossRefGoogle Scholar
  36. Yanez, M., Caceres, S., Orellana, S., Bastias, A., Verdugo, I., Ruiz-Lara, S., Casaretto, J.A.: An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. - Plant Cell Rep. 28: 1497–1507, 2009.PubMedCrossRefGoogle Scholar
  37. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. - Plant J. 61: 672–685, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • L. Hong
    • 1
    • 2
  • B. Hu
    • 1
  • X. Liu
    • 1
  • C. Y. He
    • 1
  • Y. Yao
    • 1
  • X. L. Li
    • 1
  • L. Li
    • 1
  1. 1.Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life SciencesSouth China Normal UniversityGuangzhouP.R. China
  2. 2.College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and EngineeringGuangzhouP.R. China

Personalised recommendations