Biologia Plantarum

, Volume 57, Issue 1, pp 33–40 | Cite as

Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization

  • M. C. Dias
  • G. Pinto
  • C. M. Correia
  • J. Moutinho-Pereira
  • S. Silva
  • C. Santos
Article

Abstract

In order to set up large-scale acclimatization protocols of micropropagated plants, an in-depth knowledge of their physiological responses during in vitro to ex vitro transfer is required. This work describes the photosynthetic performance of Ulmus minor micropropagated plants during acclimatization at high irradiance (HI; 200 ± 20 μmol m−2 s−1 or low irradiance (LI; 100 ± 20 μmol m−2 s−1). During this experiment, leaf pigment content, chlorophyll a fluorescence, gas exchange, stomata morphology, the activity of the Calvin cycle enzymes and saccharides were measured in persistent and new leaves. The results indicated that HI induces a higher photosynthetic performance compared to LI. Therefore, plants acclimatized under HI are likely to survive better after field transfer.

Additional key words

Calvin cycle enzymes chlorophyll elm fluorescence micropropagation net photosynthetic rate stomata transpiration rate 

Abbreviations

Car

carotenoids

Chl

chlorophyll

DM

dry mass

ci/ca

ratio of intercellular to atmospheric CO2 concentration

E

transpiration rate

Fv/Fm

variable to maximum chlorophyll fluorescence (maximal efficiency of PSII)

gs

stomatal conductance

HI

high irradiance

LI

low irradiance

PN

net photosynthetic rate

PSII

photosystem 2

qN

non-photochemical quenching

qP

photochemical quenching

RH

relative humidity

RuBisCO

ribulose-1,5-bisphosphate carboxylase/oxygenase

sFBPase

stromal fructose-1,6-bisphosphatase

ΦPSII

effective quantum efficiency of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amâncio, S., Rebordão, J.P., Chaves, M.M.: Improvement of acclimatization of micropropagated grapevine: photosynthetic competence and carbon allocation. — Plant Cell Tissue Organ Cult. 58: 31–37, 1999.CrossRefGoogle Scholar
  2. Brito, G., Costa, A., Coelho, C., Santos, C.: Large-scale field acclimatization of Olea maderensis micropropagated plants: morphological and physiological survey. — Trees 23: 1019–1031, 2009.CrossRefGoogle Scholar
  3. Brüggemann, W., Klaucke, S., Maas-Kantel, K.: Long-term chilling of young tomato plants under low light. V. Kinetic and molecular properties of two key enzymes of the Calvin cycle in Lycopersicon esculentum Mill. and L. peruvianum Mill. — Planta 194: 160–168, 1994.CrossRefGoogle Scholar
  4. Carvalho, L.C., Esquível, M.G., Martins, I., Pinto Ricardo, C., Amâncio, S.: Monitoring the stability of Rubisco in micropropagated grapevine (Vitis vinifera L.) by twodimensional electrophoresis. — J. Plant Physiol. 162: 365–374, 2005.PubMedCrossRefGoogle Scholar
  5. Carvalho, L.C., Osório, M.L., Chaves, M.M., Amâncio, S.: Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plants under ex vitro acclimatization. — Plant Cell Tissue Organ Cult. 67: 271–280, 2001.CrossRefGoogle Scholar
  6. Choudhury, N.K., Behera, R.K.: Photoinhibition of photosynthesis: role of carotenoids in photoprotection of chloroplasts. — Photosynthetica 39: 481–488, 2001.CrossRefGoogle Scholar
  7. Conde, P., Loureiro, J., Santos, C.: Somatic embryogenesis and plant regeneration from leaves of Ulmus minor Mill. — Plant Cell Rep. 22: 632–639, 2004.PubMedCrossRefGoogle Scholar
  8. Conde, P., Sousa, A., Costa, A., Santos, C.: A protocol for Ulmus minor Mill. micropropagation and acclimatization. — Plant Cell Tissue Organ Cult. 92: 113–119, 2008.CrossRefGoogle Scholar
  9. Correia, M.J., Fonseca, F., Azedo-Silva, J., Dias, C., David, M.M., Barrote, I., Osório, M.L., Osório, J.: Effects of water deficit on the activity of nitrate reductase and contents of sugars, nitrate and free amino acids in the leaves and roots of sunflower and with lupin plants growing under two nutrient supply regimes. — Physiol. Plant. 124: 61–70, 2005.CrossRefGoogle Scholar
  10. Dias, M.C., Brüggemann, W.: Photosynthesis under drought stress in Flaveria species with different degrees of development of the C4 syndrome. — Photosynthetica 45: 75–84, 2007.CrossRefGoogle Scholar
  11. Dias, M.C., Brüggemann, W.: Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. — Photosynthetica 48: 96–102, 2010.CrossRefGoogle Scholar
  12. Dias M.C., Pinto G., Santos C.: Acclimatization of micropropagated plantlets induces an antioxidative burst: a case study with Ulmus minor Mill. — Photosynthetica 49: 259–266, 2011.CrossRefGoogle Scholar
  13. Dunn, C.P.: The Elms — Breeding, Conservation and Disease Management. — Kluwer Academic Publishers, Dordrecht 2000.Google Scholar
  14. Estrada-Luna, A.A., Davies, F.T., Egilla, J.N.: Physiological changes and growth of micropropagated Chile ancho pepper plantlets during acclimatization and post-acclimatization. — Plant Cell Tissue Organ Cult. 66: 17–24, 2001.CrossRefGoogle Scholar
  15. Faisal, M., Anis, M.: Changes in photosynthetic activity, pigment composition, electrolyte leakage, lipid peroxidation, and antioxidant enzymes during ex vitro establishment of micropropagated Rauvolfia tetraphylla plantlets. — Plant Cell Tissue Organ Cult. 99: 125–132, 2009.CrossRefGoogle Scholar
  16. Fila, G., Badeck, F.W., Meyer, S., Cerovic, Z., Ghashghai, J.: Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. — J. exp. Bot. 57: 2687–2695, 2006.PubMedCrossRefGoogle Scholar
  17. Fuentes, G., Talavera, C., Opereza, C., Desjardins, Y., Santamaria, J.: Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. — In vitro cell. dev. Biol. Plant. 41: 69–76, 2005.CrossRefGoogle Scholar
  18. Grout, B.W.: Photosynthesis of regenerated plantlets in vitro and the stresses of transplanting. — Acta Hort. 230: 129–135, 1988.Google Scholar
  19. Harvengt, L., Meier-Dinkel, A., Dumas, E., Collin, E.: Establishment of a cryopreserved gene bank of European elms. — Can. J. Forest. Res. 34: 43–55, 2004.CrossRefGoogle Scholar
  20. Hazarika, B.N.: Morpho-physiological disorders in in vitro culture of plants. — Sci. Hort. 108: 105–120, 2006.CrossRefGoogle Scholar
  21. Hdider, C.Y., Desjardins, L.: Reduction of ribulose 1-5 bisphosphate carboxylase/oxygenase efficiency by the presence of sucrose during the tissue culture of strawberry plantlets. — In Vitro cell. dev. Biol. Plant 31: 165–170, 1995.CrossRefGoogle Scholar
  22. Jones, M.G.K., Outlaw, W.H., Lowry, O.H.: Enzymatic assay of 10-7 to 10-14 moles of sucrose in plant tissue. — Plant Physiol. 60: 379–383, 1977.PubMedCrossRefGoogle Scholar
  23. Lilley, R.M., Walker, D.A.: An improved spectrophotometric assay for ribulose-bisphosphate carboxylase. — Biochem. biophys. Acta 358: 226–229, 1974.PubMedCrossRefGoogle Scholar
  24. Merkel, S.A., Nairn, C.J.: Hardwood tree biotechnology. — In Vitro cell. dev. Biol. 41: 602–619, 2005.Google Scholar
  25. Osório, M.L., Gonçalves, S., Osório, J., Romano, A.: Effects of CO2 concentration on acclimatization and physiological responses of two cultivars of carob tree. — Biol. Plant. 49: 161–167, 2005.CrossRefGoogle Scholar
  26. Osório, M.L., Osório, J., Romano, A.: Chlorophyll fluorescence in micropropagated Rhododendron ponticum subsp. baeticum plants in response to different irradiances. — Biol. Plant. 54: 415–422, 2010.CrossRefGoogle Scholar
  27. Park, Y-S.: Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. — Ann. Forest. Sci. 59: 651–656, 2002.CrossRefGoogle Scholar
  28. Pinto, G., Park, Y-S., Silva, S., Araújo, C., Neves, L., Santos, C.: Factors affecting maintenance, proliferation, and germination of secondary somatic embryos of Eucalyptus globulus Labill.. — Plant Cell Tissue Organ Cult. 95: 69–78, 2008.CrossRefGoogle Scholar
  29. Pinto, G., Silva, S., Loureiro, J., Costa, A., Dias, M.C., Araújo, C., Neves, L., Santos, C.: Acclimatization of secondary somatic embryos derived plants of Eucalyptus globulus Labill.: an ultrastructural approach. — Trees 25: 383–392, 2011.CrossRefGoogle Scholar
  30. Pospíšilová, J., Synková, H., Haisel, D., Baťková, P.: Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. — Biol. Plant. 53: 11–20, 2009.CrossRefGoogle Scholar
  31. Pospíšilová, J., Synková, H., Haisel, D., Čatský, J., Wilhelmová, N., Šrámek, F.: Effect of elevated CO2 concentrations on acclimation of tobacco plantlets to ex vitro conditions. — J. exp. Bot. 50: 119–126, 1999.Google Scholar
  32. Rybczyński, J.J., Borkowska, B., Fiuk, A., Gawńroska, H., Śliwińska, E., MikuŁa, A.: Effect of sucrose concentration on photosynthetic activity of in vitro cultures Gentiana kurroo (Royle) germlings. — Acta Physiol. Plant. 29: 445–453, 2007.CrossRefGoogle Scholar
  33. Schreiber, U., Bilger, W., Neubauer: Chlorophyll flourescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70, Springer-Verlag, Berlin 1995.CrossRefGoogle Scholar
  34. Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. — Remote Sensing Environ. 81: 337–354, 2002.CrossRefGoogle Scholar
  35. Stitt, M., Bulpin, P.V., Rees, T.A.: Pathway of starch breakdown in photosynthetic tissues of Pisum sativum. — Biochem. Acta 544: 200–214, 1978.CrossRefGoogle Scholar
  36. Van Huylenbroeck, J.M., Piqueras, A., Debergh, P.C.: The evolution of photosynthesis capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. — Plant Sci. 155: 59–66, 2000.PubMedCrossRefGoogle Scholar
  37. Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 47–150, 1990.CrossRefGoogle Scholar
  38. Von Caemmerer, S., Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.CrossRefGoogle Scholar
  39. Walters, R.G., Horton, P.: Resolution of components of nonphotochemical chlorophyll fluorescence quenching in barley leaves. — Photosynth. Res. 27:121–133, 1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. C. Dias
    • 1
  • G. Pinto
    • 1
  • C. M. Correia
    • 2
  • J. Moutinho-Pereira
    • 2
  • S. Silva
    • 1
  • C. Santos
    • 1
  1. 1.Department of Biology and Centre for Environmental and Marine Studies (CESAM)University of AveiroAveiroPortugal
  2. 2.Centre for Research and Technology in Agro-Environmental and Biological Sciences (CITAB) and Department of Biology and EnvironmentUniversity of Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations