Advertisement

Biologia Plantarum

, Volume 57, Issue 1, pp 169–173 | Cite as

Progesterone moderates damage in Arabidopsis thaliana caused by infection with Pseudomonas syringae or P. fluorescens

  • A. Janeczko
  • I. Tóbiás
  • A. Skoczowski
  • F. Dubert
  • G. Gullner
  • B. BarnaEmail author
Brief Communication

Abstract

Brassinosteroids are known to protect plants against various abiotic and biotic stresses, however, very limited information is available about the role of progesterone. Therefore the effects of Pseudomonas syringae pv. syringae (P.s.) wild type strain 61, its hrcC mutant, and the saprophytic P. fluorescens (P.f.) strain 55 were investigated in wild type Arabidopsis thaliana cv. Columbia and its rbohF knock-out mutant, with and without progesterone pre-treatment. The reactions of wild type and rbohF mutant Arabidopsis to bacterial inoculations were similar, although 2 h after injection of P.s. a larger increase of electrolyte leakage was measured in wild type than in rbohF knockout mutant leaves. The hrcC mutant caused weak necrotic symptoms and increased leakage in both types of Arabidopsis, although to a much lesser extent than P.s. The P.f. did not induce any visible symptom, but slightly increased the electrolyte leakage in both types of Arabidopsis. Inoculation by all Pseudomonas bacteria led to significant alterations in photosystem 2 efficiency as compared to control plants. Pre-treatment of leaves with progesterone diminished the necrotic symptoms, the electrolyte leakage and improve the efficiency of photosystem 2 caused by Pseudomonas bacteria.

Additional key words

Arabidopsis rbohF knockout mutant ion leakage PS 2 efficiency Pseudomonas syringae pv. syringae hrcC mutant 

Abbreviations

BRs

brassinosteroids

Fv/Fm

variable to maximum fluorescence ratio

hpi

hours post inoculation

P.f.

Pseudomonas fluorescens

P.s.

Pseudomonas syringae pv. syringae

PS

photosystem

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.PubMedCrossRefGoogle Scholar
  2. Barna, B., Ádám, A., Király, Z.: Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses. — Naturwissenschaften 80: 420–422, 1993.CrossRefGoogle Scholar
  3. Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., Roitsch, T.: Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. — Physiol. Plant. 122: 419–428, 2004.CrossRefGoogle Scholar
  4. Bhattacharya, B., Gupta, K.: Steroid hormone effects on growth and apical dominance of sunflower. — Phytochemistry 20: 989–991, 1981.CrossRefGoogle Scholar
  5. Bonfig, K.B., Schreiber, U., Gabler, A., Roitsch, T., Berger, S.: Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. — Planta 225: 112, 2006.PubMedCrossRefGoogle Scholar
  6. Clouse, S.D., Sasse, J.M.: Brassinosteroids: essential regulators of plant growth and development. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 427–451, 1998.PubMedCrossRefGoogle Scholar
  7. Deng, W.L., Preston, G., Collmer, A., Chang, C.-J., Huang, H.- C.: Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. — J. Bacteriol. 180: 4523–4531, 1998.PubMedGoogle Scholar
  8. Dhaubhadel, S., Browning, K.S., Gallie, D.R., Krishna, P.: Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. — Plant J. 29: 681–691, 2002.PubMedCrossRefGoogle Scholar
  9. Doke, N.: Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal cell wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. — Physiol. Plant Pathol. 23: 359–367, 1983.CrossRefGoogle Scholar
  10. Erdal, S., Dumlupinar, R.: Mammalian sex hormones stimulate antioxidant system and enhance growth of chickpea plants. — Acta Physiol. Plant. 33: 1011–1017, 2011.CrossRefGoogle Scholar
  11. Freeman, B.C., Beattie, G.A.: Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. — Mol. Plant Microbe Interact. 22: 857–867, 2009.PubMedCrossRefGoogle Scholar
  12. Gawienowski, A.M., Gibbs, C.C.: Identification of cholesterol and progesterone in apple seeds. — Steroids 12: 545–550, 1968.PubMedCrossRefGoogle Scholar
  13. Iino, M., Nomura, N., Tamaki, Y., Yamada, Y., Yoneyama, K., Takeuchi, Y., Mori, M., Asami, T., Nakano, T., Yokota, T.: Progesterone: its occurrence in plants and involvement in plant growth. — Phytochemistry 68: 1664–1673, 2007.PubMedCrossRefGoogle Scholar
  14. Janeczko, A.: The presence and activity of progesterone in the plant kingdom. — Steroids 77: 169–173, 2012.PubMedCrossRefGoogle Scholar
  15. Janeczko, A., Budziszewska, B., Skoczowski, A., Dybała, M.: Specific binding sites for progesterone and 17β-estradiol in cells of Triticum aestivum L. — Acta Biochim. Pol. 55: 707–711, 2008.PubMedGoogle Scholar
  16. Janeczko, A., Filek, W.: Stimulation of generative development in partly vernalized winter wheat by animal sex hormones. — Acta Physiol. Plant. 24: 291–295, 2002.CrossRefGoogle Scholar
  17. Janeczko, A., Filek, W., Biesaga-Kościelniak, J., Marcińska, I., Janeczko, Z.: The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. — Plant Cell Tissue Organ Cult. 72: 147–151, 2003.CrossRefGoogle Scholar
  18. Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. — Biol. Plant. 51: 355–358, 2007a.CrossRefGoogle Scholar
  19. Janeczko, A., Kościelniak, J., Pilipowicz, M., Szarekłukaszewska, G., Skoczowski, A.: Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress. — Photosynthetica 43: 293–298, 2005.CrossRefGoogle Scholar
  20. Janeczko, A., Tóbias, I., Skoczowski, A., Dubert, F., Gullner, G., Barna, B.: Bacterial infection and pre-treatment with 24-epibrassinolide markedly affect the heat emission and membrane permeability of rape cotyledons. — Thermochim. Acta 458: 88–91, 2007b.CrossRefGoogle Scholar
  21. Joo, J.H., Wang, S., Chen, J.G., Jones, A.M., Fedoroff, N.V.: Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. — Plant Cell 17: 957–970, 2005.PubMedCrossRefGoogle Scholar
  22. Kesy, J., Trzaskalska, A., Galoch, E., Kopcewitcz, J.: Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. — Biol. Plant. 47: 597–600, 2003.CrossRefGoogle Scholar
  23. Krishna, P.: Brassinosteroid-mediated stress responses. — J. Plant Growth Regul. 22: 289–297, 2003.PubMedCrossRefGoogle Scholar
  24. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takasuto, S., Yamaguchi, I., Yoshida, S.: Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. — Plant J. 33: 887–898, 2003.PubMedCrossRefGoogle Scholar
  25. Pauli, G.F., Friesen, J.B., Gödecke, T., Farnsworth, N.R., Glodny, B.: Occurrence of progesterone and related animal steroids in two higher plants. — J. Natur. Prod. 73: 338–345, 2010.CrossRefGoogle Scholar
  26. Pogány, M., Von Rad, U., Grün, S., Dongó, A., Pintye, A., Simoneau, P., Bahnweg, G., Kiss, L., Barna, B., Dürner, J.: Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. — Plant Physiol. 151: 1459–1475, 2009.PubMedCrossRefGoogle Scholar
  27. Simersky, R., Novak, O., Morris, D.A., Pouzar, V., Strnad, M.: Identification and quantification of several mammalian steroid hormones in plants by UPLC-MS/MS. — J. Plant Growth Reg. 28: 125–136, 2009.CrossRefGoogle Scholar
  28. Skoczowski, A., Janeczko, A., Gullner, G., Tóbias, I., Kornaś, A., Barna, B.: Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HRmutant of Pseudomonas syringae or with P. fluorescens. — J. therm. Anal. Calorim. 104: 131–139, 2011.CrossRefGoogle Scholar
  29. Strasser, R.J., Srivatava, A., Tsimilli-Michael, M.: The fluorescens transient as a tool to characterize and screen photosynthetics samples. — In: Yunus, M., Pathre, U., Mohaty, P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.Google Scholar
  30. Szatmári, Á., Ott, P.G., Varga, G.J., Besenyei, E., Czelleng, A., Klement, Z., Bozsó, Z.: Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. — Plant Cell Rep. 25: 728–740, 2006.PubMedCrossRefGoogle Scholar
  31. Torres, M.A., Dangl, J.L., Jones, J.D.G.: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. — Proc. nat. Acad. Sci. USA 99: 517–522, 2002.PubMedCrossRefGoogle Scholar
  32. Vanitha, S.C., Umesha S.: P. fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. — Biol. Plant. 55: 317–322, 2011CrossRefGoogle Scholar
  33. Wojtaszek, P.: Oxidative burst: an early plant response to pathogen infection. — Biochem J. 322: 681–692, 1997.PubMedGoogle Scholar
  34. Ylstra, B., Touraev, A., Brinkmann, A.O., Heberle-Bors, E., Tunen, A.: Steroid hormones stimulate germination and tube growth of in vitro matured tobacco pollen. — Plant Physiol. 107: 639–643, 1995.PubMedGoogle Scholar
  35. Yang, X.H., Xu, Z.H., Xue, H.W.: Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. — Plant Cell 17: 116–131, 2005.PubMedCrossRefGoogle Scholar
  36. Zhang, Z., Ramirez, J., Reboutier, D., Brault, M., Trouverie, J., Pennarun, A.M., Amiar, Z., Biligui, B., Galagovsky, L., Rona, J.P.: Brassinosteriods regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. — Plant Cell Physiol. 46: 1494–1504, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Janeczko
    • 1
  • I. Tóbiás
    • 2
  • A. Skoczowski
    • 1
  • F. Dubert
    • 1
  • G. Gullner
    • 2
  • B. Barna
    • 2
    Email author
  1. 1.The Franciszek Górski Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland
  2. 2.Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations