Biologia Plantarum

, Volume 56, Issue 4, pp 699–704 | Cite as

Salt- and osmotic stress-induced choline monooxygenase expression in Kochia scoparia is ABA-independent

  • E. B. Kalinina
  • B. K. Keith
  • A. J. Kern
  • W. E. Dyer


Choline monooxygenase (CMO) is the first regulatory enzyme in the biosynthetic pathway for glycine betaine, an effective osmoprotectant in Kochia scoparia, a highly drought- and salt-tolerant species. In seedlings, CMO transcript levels are rapidly increased in response to both NaCl and osmotic stress treatments. The mRNA level in shoots was substantially higher than in roots. The rapid induction seen in whole plants was in contrast to the apparent down-regulation observed in suspension-cultured K. scoparia cells in response to the same salt stress. Treatment with exogenous abscisic acid (ABA) or fluridone shows that CMO induction proceeds via an ABA-independent signal transduction pathway. Examination of the CMO upstream regulatory region reveals a number of stress response-related elements, some of which may be involved in the stress tolerance shown by this species.

Additional key words

gene expression glycine betaine iso-osmotic treatments Northern hybridization reverse transcription quantitative PCR 



abscisic acid


ABA-responsive elements


auxin response factor


betaine aldehyde dehydrogenase


choline monooxydase


dehydration-responsive element


glycine betaine


reverse transcription quantitative PCR


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, M.A., Javed, F., Ashraf, M.: Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. — Plant Growth Regul. 53: 53–63, 2007.CrossRefGoogle Scholar
  2. Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress tolerance. — Environ. exp. Bot. 59: 206–216, 2007.CrossRefGoogle Scholar
  3. Balaji, B., Bucholtz, D.B., Anderson, J.M.: Barley yellow dwarf virus and cereal yellow dwarf virus quantification by realtime polymerase chain reaction in resistant and susceptible plants. — Phytopathology 93: 1386–1392, 2003.PubMedCrossRefGoogle Scholar
  4. Bartels, P.G., Watson, C.W.: Inhibition of carotenoid synthesis by fluridone and norflurazon. — Weed Sci. 26: 198–203, 1978.Google Scholar
  5. Becker, D.A.: Stem abscission in tumbleweeds of the ChenopodiaceaeKochia. — Amer. J. Bot. 65: 375–383, 1978.CrossRefGoogle Scholar
  6. Bhuiyan, N.H., Hamada, A., Yamada, N., Rai, V., Hibino, T., Takabe., T.: Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. — J. exp. Bot. 58: 4203–4212, 2007.PubMedCrossRefGoogle Scholar
  7. Chen, T.H.H., Murata, N.: Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. — Plant Cell Environ. 34: 1–20, 2011.PubMedCrossRefGoogle Scholar
  8. Doyle, J.J., Doyle, J.L.: Isolation of DNA from fresh plant tissue. — Focus 12: 13–15, 1990.Google Scholar
  9. Encina, A.E., Moral, R.M., Acebes, J.L., Álvarez, J.M.: Characterization of cell walls in bean (Phaseolus vulgaris L.) callus cultures tolerant to dichlorbenil. — Plant Sci. 160: 331–339, 2001.PubMedCrossRefGoogle Scholar
  10. Eulgem, T., Rushton, P.J., Robatzek, S., Somssich, I.E.: The WRKY superfamily of plant transcription factors. — Trends Plant Sci. 5: 199–206, 2000.PubMedCrossRefGoogle Scholar
  11. Guilfoyle, T.J., Hagen, G.: Auxin response factors. — Curr. Opin. Plant Biol. 10: 453–460, 2007.PubMedCrossRefGoogle Scholar
  12. Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T.: Plant cisacting regulatory DNA elements (PLACE) database: 1999. Nucl. Acids Res. 27: 297–300, 1999.PubMedCrossRefGoogle Scholar
  13. Hobo, T., Kowyama, Y., Hattori, T.: A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. — Proc. nat. Acad. Sci. USA 96: 15348–15353, 1999.PubMedCrossRefGoogle Scholar
  14. Kern, A.J., Chaverra, M.E., Cranston, H.J., Dyer, W.E.: Dicamba responsive genes in herbicide-resistant and susceptible biotypes of Kochia scoparia. — Weed Sci. 53: 139–145, 2005.CrossRefGoogle Scholar
  15. Kern, A.J., Dyer, W.E.: Glycine betaine biosynthesis is induced by salt stress but repressed by auxinic herbicides in Kochia scoparia. — J. Plant Growth Regul. 23: 9–19, 2003.Google Scholar
  16. Khan, M.S., Yu, X., Kikuchi, A., Asahina, M., Watanabe, K.N.: Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. — Plant Biotechnol. 26: 125–134, 2009.CrossRefGoogle Scholar
  17. Kikuchi, A., Sanuki, N., Higashi, K., Koshiba, T., Kamada, H.: Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. — Planta. 223: 637–645, 2006.PubMedCrossRefGoogle Scholar
  18. Koheil, M.A.H., Hilal, S.H., El-Alfy, T.S., Leistner, E.: Quaternary ammonium compounds in intact plants and cell suspension cultures of Atriplex semibaccata and A. halimus during osmotic stress. — Phytochemistry 31: 2003–2008, 1992.CrossRefGoogle Scholar
  19. Lee, D.J., Park, J.W., Lee, H.W., Kim, J.: Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. — J. exp. Bot. 60: 3935–3957, 2009.PubMedCrossRefGoogle Scholar
  20. Li, Q., Yin, H., Li, D., Zhu, H., Zhang, Y., Zhu, W.: Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K. — J. Genet. Genomics 34: 355–361, 2007.PubMedCrossRefGoogle Scholar
  21. Ma, S., Gong, Q., Bohnert, H.J.: Dissecting salt stress pathways. — J. exp. Bot. 57: 1097–1107, 2006.PubMedCrossRefGoogle Scholar
  22. Meng, Y.L., Wang, Y.M., Zhang, D.B., Nii, N.: Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expression under stress conditions. — Cell Res. 11: 187–193, 2001.PubMedCrossRefGoogle Scholar
  23. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–476, 1962.CrossRefGoogle Scholar
  24. Nakashima, K., Ito, Y., Yamaguchi-Shinozaki, K.: Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. — Plant Physiol. 149: 88–95, 2009.PubMedCrossRefGoogle Scholar
  25. Park, H.C., Kim, M.L., Kang, Y.H.: Pathogen- and NaClinduced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. — Plant Physiol. 135: 2150–2161, 2004.PubMedCrossRefGoogle Scholar
  26. Parmentier-Line, C.M., Panta, G.R., Rowland, L.J.: Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures. — Plant Sci. 162: 273–282, 2002.CrossRefGoogle Scholar
  27. Rathinasabapathi, B., Burnet, M., Russell, B.L., Gage, D.A., Liao, P-C., Nye, G.J., Scott, P., Golbeck, J.H., Hanson, A.D.: Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. — Proc. nat. Acad. Sci. USA 94: 454–3458, 1997.CrossRefGoogle Scholar
  28. Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 357–384, 1993.CrossRefGoogle Scholar
  29. Rozen, S., Skaletsky, H.: Primer3 on the www for general users and for biologist programmers. — Methods mol. Biol. 132: 365–378, 2000.PubMedGoogle Scholar
  30. Russell, B.L., Rathinasabapathi, B., Hanson, A.: Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. — Plant Physiol. 116: 859–865, 1998.PubMedCrossRefGoogle Scholar
  31. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual. — Cold Spring Harbor Laboratory Press, Cold Spring Harbor — New York 1989.Google Scholar
  32. Satoh, R., Nakashima, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. — Plant Physiol. 130: 709–719, 2002.PubMedCrossRefGoogle Scholar
  33. Shahmuradov, I.A., Gammerman, A.J., Hancock, J.M., Bramley, P.M., Solovyev, V.V.: PlantProm: a database of plant promoter sequences. — Nucl. Acids Res. 31: 114–117, 2003.PubMedCrossRefGoogle Scholar
  34. Shen, Y.G., Du, B.X., Zhang, W.K., Zhang, J.S., Chen, S-Y.: AhCMO, regulated by stress in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. — Theor. appl. Genet. 105: 815–821, 2002.PubMedCrossRefGoogle Scholar
  35. Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. — J. exp. Bot. 58: 221–227, 2007.PubMedCrossRefGoogle Scholar
  36. Tabuchi, T., Kawaguchi, Y., Azuma, T., Nanmori, T., Yasuda, T.: Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L. — Plant Cell Physiol. 46: 505–513, 2005.PubMedCrossRefGoogle Scholar
  37. Wang, L-W., Showalter, A.M.: Cloning and salt-induced, ABAindependent expression of choline monooxygenase in Atriplex prostrata. — Physiol. Plant. 120: 405–412, 2004.PubMedCrossRefGoogle Scholar
  38. Xu, N., Hagen, G., Guilfoyle, T.: Multiple auxin response modules in the soybean SAUR 15A promoter. — Plant Sci. 126: 193–201, 1997.CrossRefGoogle Scholar
  39. Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.PubMedGoogle Scholar
  40. Zhang, W., Gusta, L.V.: Germination response of black and yellow seed coated canola (Brassica napus) lines to chemical treatments under cold temperature conditions. — Plant Growth Regul. 60: 105–114, 2010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • E. B. Kalinina
    • 1
  • B. K. Keith
    • 1
  • A. J. Kern
    • 2
  • W. E. Dyer
    • 1
  1. 1.Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanUSA
  2. 2.Department of BiologyNorthland CollegeAshlandUSA

Personalised recommendations