Biologia Plantarum

, Volume 56, Issue 3, pp 465–472

Divergence of TERMINAL FLOWER1-like genes in Rosaceae

  • N. Mimida
  • J. Li
  • C. Zhang
  • S. Moriya
  • Y. Moriya-Tanaka
  • H. Iwanami
  • C. Honda
  • H. Oshino
  • K. Takagishi
  • A. Suzuki
  • S. Komori
  • M. Wada
Article

Abstract

Rosaceae is a large family, however, our understanding of its phylogeny is based largely on morphological observations. To understand the relationship between subfamilies Rosoideae, Amygdaloideae, Maloideae and Spiraeoideae at a molecular level, we isolated and compared the plant phosphatidyl ethanolamine-binding protein-like genes TERMINAL FLOWER1 (TFL1)-like and CENTRORADIALIS (CEN)-like, which are involved in the control of shoot meristem identity and flowering time. A comparison of gene structures and phylogenetic tree analyses by the Neighbor-Joining method showed that each of the two TFL1-like (MdTFL1-1 and MdTFL1-2) and CEN-like genes (MdCENa and MdCENb) in Maloideae were classified into two distinct clades. The TFL1-like and CEN-like genes of Gillenia in Spiraeoideae belonged to monophyletic Maloideae groups, suggesting that Gillenia and Maloideae have a common near ancestor. However, the Gillenia TFL1-like gene does not contain the insertion sequence of the third intron that is found in MdTFL1-2-like genes of the members of Maloideae such as apple, Korean whitebeam, quince, and Siberian mountain ash. Therefore, after the Maloideae ancestor genome became polyploid through hybridization between Gillenia-like species or genome doubling, an insertion sequence of the third intron of MdTFL1-2-like genes was generated.

Additional key words

Amygdaloideae CEN evolution Gillenia Maloideae Rosoideae Spiraeoideae TFL1 

Abbreviations

CEN

CENTRORADIALIS

FT

FLOWERING LOCUS T

MFT

MOTHER OF FT AND TFL1

PEBP

phosphatidyl ethanolamine-binding protein

TFL1

TERMINAL FLOWER1

PCR

polymerase chain reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Lee, J.H., Yoo, S.Y., Henz, S.R., Brady, R.L., Weigel, D.: A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. — EMBO J. 25: 605–614, 2006.PubMedCrossRefGoogle Scholar
  2. Challice, J.S., Kovanda, M.: Chemotaxonomic studies in the family Rosaceae and the evolutionary origins of the subfamily Maloideae. — Preslia 53: 289–304, 1981.Google Scholar
  3. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., Coupland, G.: FT protein movement contributes to longdistance signaling in floral induction of Arabidopsis. — Science 316: 1030–1033, 2007.PubMedCrossRefGoogle Scholar
  4. De Bodt, S., Raes, J., Florquin, K., Rombauts, S., Rouze, P., Theissen, G., Van der Peer, Y.: Genome wide structural annotation and evolutionary analysis of the type I MADSbox genes in plants. — J. mol. Evol. 56: 573–586, 2003.PubMedCrossRefGoogle Scholar
  5. Durner, E.F., Poling, E.B.: Strawberry developmental responses to photoperiod and temperature. — Adv. Strawberry Prod. 7: 6–14, 1988.Google Scholar
  6. Esumi, T., Tao, R., Yonemori, K.: Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. — Sex. Plant Reprod. 17: 277–287, 2005.CrossRefGoogle Scholar
  7. Esumi, T., Kitamura, Y., Hagihara, C., Yamane, H., Tao, R.: Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). — Sci. Hort. 125: 608–616, 2010.CrossRefGoogle Scholar
  8. Evans, R.C., Campbell, C.S.: The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. — Amer. J. Bot. 89: 1478–1484, 2002.CrossRefGoogle Scholar
  9. Goldblatt, P.: Cytotaxonomic studies in the tribe Quillajeae (Rosaceae). — Ann. Missouri bot. Garden 63: 200–206, 1976.CrossRefGoogle Scholar
  10. Goldblatt, P. (ed.): Index to plant chromosome numbers 1979–1981. — Monogr. Syst. Bot. Missouri Bot. Garden 1984.Google Scholar
  11. Hedman, H., Kallman, T., Lagercrantz, U.: Early evolution of the MFT-like gene family in plants. — Plant mol. Biol. 70: 359–369, 2009.PubMedCrossRefGoogle Scholar
  12. Imamura, T., Nakatsuka, T., Higuchi, A., Nishihara, M., Takahashi, H.: The gentian orthologues of FT/TFL1 gene family control floral initiation in Gentiana. — Plant Cell Physiol. 52: 1031–1041, 2011.PubMedCrossRefGoogle Scholar
  13. Iwata, H., Gaston, A., Remay, A., Thouroude, T., Jeauffre, J., Kawamura, K., Hibrand-Saint, O.L., Araki, T., Denoyes, B., Foucher, F.: The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. — Plant J. 69: 116–125, 2012.PubMedCrossRefGoogle Scholar
  14. Jaeger, K.E., Wigge, P.A.: FT protein acts as a long-range signal in Arabidopsis. — Curr. Biol. 17: 1050–1054, 2007.PubMedCrossRefGoogle Scholar
  15. Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J.: Multiple sequence alignment with Clustal X. — Trends Biochem. Sci. 23: 403–405, 1998.PubMedCrossRefGoogle Scholar
  16. Kotoda, N., Hayashi, H., Suzuki, M., Igarashi, M., Hatsuyama, Y., Kidou, S.-I., Igasaki, T., Nishiguchi, M., Yano, K., Shimizu, T., Takahashi, S., Iwanami, H., Moriya, S., Abe, K.: Molecular characterization of FLOWERING LOCUS Tlike genes of apple (Malus × domestica Borkh.). — Plant Cell Physiol. 51: 561–575, 2010.PubMedCrossRefGoogle Scholar
  17. Kotoda, N., Iwanami, H., Takahashi, S., Abe, K.: Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. — J. amer. Soc. hort. Sci. 131: 74–81, 2006.Google Scholar
  18. Lo, E.Y.Y., Stefanovic, S., Christensen, K.I., Dickinson, T.A.: Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences. — Mol. Phylogenet. Evol. 51: 157–168, 2009.PubMedCrossRefGoogle Scholar
  19. Lo, E.Y.Y., Stefanovic, S., Dickinson, T.A.: Molecular reappraisal of relationships between Crataegus and Mespilus (Rosaceae, Pyreae) — two genera or one? — Syst. Bot. 32: 596–616, 2007.CrossRefGoogle Scholar
  20. Mimida, N., Kotoda, N., Ueda, T., Igarashi, M., Hatsuyama, Y., Iwanami, H., Moriya, S., Abe, K.: Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). — Plant Cell Physiol. 50: 394–412, 2009.PubMedCrossRefGoogle Scholar
  21. Mimida, N., Ureshino, A., Tanaka, N., Shigeta, N., Sato, N., Tanaka-Moriya, Y., Iwanami, H., Honda, C., Suzuki, A., Komori, S., Wada, M.: Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × domestica Borkh.) revealed by in situ hybridization. — Plant Cell Rep. 30: 1485–1492, 2011.PubMedCrossRefGoogle Scholar
  22. Morgan, D.R., Soltis, D.E., Robertson, K.R.: Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. — Amer. J. Bot. 81: 890–903, 1994.CrossRefGoogle Scholar
  23. Oh, S., Potter, D.: Phylogenetic utility of the second intron of LEAFY in Neillia and Stephanandra (Rosaceae) and implications for the origin of Stephanandra. — Mol. Phylogenet. Evol. 29: 203–215, 2003.PubMedCrossRefGoogle Scholar
  24. Oh, S., Potter, D.: Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY. — Amer. J. Bot. 92: 179–192, 2005.CrossRefGoogle Scholar
  25. Perrière, G., Gouy, M.: www-Query: an on-line retrieval system for biological sequence banks. — Biochimie 78: 364–369, 1996.PubMedCrossRefGoogle Scholar
  26. Phipps, J.B., Robertson, K.R., Rohrer, J.R., Smith, P.G.: Origins and evolution of subfamily Maloideae (Rosaceae). — Syst. Bot. 16: 303–332, 1991.CrossRefGoogle Scholar
  27. Potter, D., Eriksson, T., Evans, R.C., Oh, S.H., Smedmark, J.E.E., Morgan, D.R., Kerr, M., Robertson, K.R., Arsenault, M.P., Dickinson, T.A., Campbell, C.S.: Phylogeny and classification of Rosaceae. — Plant Syst. Evol. 266: 5–43, 2007.CrossRefGoogle Scholar
  28. Sax, K.: The origin of the Pomoideae. — Proc. amer. Soc. hort. Sci. 30: 147–150, 1933.Google Scholar
  29. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A. et al.: The genome of the domesticated apple (Malus × domestica Borkh.). — Nat. Genet. 42: 833–839, 2010.PubMedCrossRefGoogle Scholar
  30. Wada, M., Cao, Q.F., Kotoda, N., Soejima, J.I., Masuda, T.: Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. — Plant mol. Biol. 49: 567–577, 2002.PubMedCrossRefGoogle Scholar
  31. Wilkie, J.D., Sedgley, M., Olesen, T.: Regulation of floral initiation in horticultural trees. — J. exp. Bot. 59: 3215–3228, 2008.PubMedCrossRefGoogle Scholar
  32. Yao, J.L., Dong, Y.H., Kvarnheden, A., Morris, B.: Seven MADS-box genes in apple are expressed in different parts of the fruit. — J. amer. Soc. hort. Sci. 124: 8–13, 1999.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • N. Mimida
    • 1
  • J. Li
    • 1
  • C. Zhang
    • 1
  • S. Moriya
    • 2
  • Y. Moriya-Tanaka
    • 2
  • H. Iwanami
    • 2
  • C. Honda
    • 2
  • H. Oshino
    • 1
  • K. Takagishi
    • 1
  • A. Suzuki
    • 1
  • S. Komori
    • 1
  • M. Wada
    • 2
  1. 1.Faculty of AgricultureIwate UniversityMorioka, IwateJapan
  2. 2.Apple Research StationNational Institute of Fruit Tree ScienceMorioka, IwateJapan

Personalised recommendations