Advertisement

Biologia Plantarum

, Volume 56, Issue 2, pp 357–361 | Cite as

Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis

  • A. Mitrović
  • D. Janošević
  • S. Budimir
  • J. Bogdanović Pristov
Brief Communication

Abstract

Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis from leaf explants were examined. During the early stages of shoot organogenesis there was a decrease in superoxide dismutase (SOD) and an increase in catalase (CAT) activity, and later during organogenesis there was an increase in peroxidase (POD) and polyphenol oxidase (PPO) activity. Two highly regulated turning points may be distinguished regarding activities and isoforms of antioxidative enzymes: the initiation of shoot organogenesis and the shoot bud formation. Our data suggest the role of specific CAT, POD, SOD and PPO isoforms in separate processes during T. bellus direct shoot organogenesis.

Additional key words

catalase peroxidase polyphenol oxidase superoxide dismutase 

Abbreviations

BAP

benzylaminopurine

CAT

catalase

EDTA

ethylenediaminetetraacetic acid

NAA

naphtaleneacetic acid

POD

peroxidase

PPO

polyphenol oxidase

PVP

polyvinylpyrrolidone

SOD

superoxide dismutase

SDS

sodium dodecyl sulfate

TRIS

tris(hydroxymethyl)aminomethane

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by a grant (No. 173017 and 173015) from the Ministry of Education and Science of the Republic of Serbia.

References

  1. Andersone, U., Ievinsh, G.: Changes of morphogenic competence in mature Pinus sylvestris L. buds in vitro. — Ann. Bot. 90: 293–98, 2002.PubMedCrossRefGoogle Scholar
  2. Asada, K., Yoshikawa, K., Takahashi, M., Maeda, Y., Enmanji, K.: Superoxide dismutase from a blue-green algae Plectonema borianum. — J. biol. Chem. 250: 2801–2807, 1975.PubMedGoogle Scholar
  3. Beauchamp, C., Fridowich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.PubMedCrossRefGoogle Scholar
  4. Chance, B., Maehly, A.C.: Assay of catalases and peroxidases. — In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Pp. 765–775. Academic Press, New York 1955.Google Scholar
  5. Claiborne, A.: Catalase activity. — In: Greenwald R.A. (ed.): Handbook of Methods for Oxygen Radical Research. Pp. 283–284. CRC Press, Boca Raton 1984.Google Scholar
  6. Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inze, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. — Cell. Mol. Life Sci. 57: 779–795, 2000.PubMedCrossRefGoogle Scholar
  7. Gaspar, T.: Reducing properties and markers of lipid peroxidation in normal and hyperhydrating shoots of Prunus avium L. — J. Plant Physiol. 153: 339–346, 1995.Google Scholar
  8. Gaspar, T., Penel, C., Hagege, D., Grepin, H.: Peroxidases in plant growth, differentiation and developmental processes. — In: Lobarewski, J., Grepin, H., Penel, C., Gaspar, T. (ed.): Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. Pp. 249–280. University M. Curie-Sklodowska, Lublin and University of Geneva, Geneva 1991.Google Scholar
  9. Gillespie, J., Bidochka, M.J., Khachkatourians, G.G.: Separation and characterization of grasshopper hemolymph phenoloxidases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. — Comp. Biochem. Physiol. 98C: 351–358, 1991.Google Scholar
  10. Gupta, S.D., Datta, S.: Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. — Biol. Plant. 47: 179–183, 2003/4.CrossRefGoogle Scholar
  11. Hendry, G.A.F., Crawford, R.M.M.: Oxygen and environmental stress in plants — an overview. — Proc. roy. Soc. Edinbourgh 102B: 1–10, 1994.Google Scholar
  12. Jackson, P., Ricardo, C.P.P.: The changing peroxidase polymorphism in Lupinus albus during vegetative development. — Aust. J. Plant. Physiol. 25: 261–269, 1998.CrossRefGoogle Scholar
  13. Kay, L.E., Basile, D.V.: Specific peroxidase izoenzymes are correlated with organogenesis. — Plant Physiol. 84: 99–105, 1987.PubMedCrossRefGoogle Scholar
  14. Laemmli, U.K.: Cleavage of structural proteins during assembly of the head of bacteriophage T4. — Nature 227: 680–685, 1970.PubMedCrossRefGoogle Scholar
  15. Lowry, O., Rosebrough, W., Farr, A., Randall, R.: Protein measurement with the Folin phenol reagent. — J. biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  16. Malda, G., Backhaus, R.A., Martin C.: Alterations in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus. — Plant Cell Tissue Organ Cult. 58: 1–9, 1999.CrossRefGoogle Scholar
  17. Mayer, A.M.: Polyphenol oxidases in plants and fungi: going places? — Phytochemistry 67: 2318–2331, 2006.PubMedCrossRefGoogle Scholar
  18. McCord, J.M., Fridovish, I.: Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). — J. biol. Chem. 244: 6049–6055, 1969.PubMedGoogle Scholar
  19. Meratan, A.A., Ghaffari, S.-M., Niknam, V.: In vitro organogenesis and antioxidant enzymes activity in Acanthophyllum sordidum. — Biol. Plant. 53: 5–10, 2009.CrossRefGoogle Scholar
  20. Mitrović, A., Bogdanović, J.: Activities of antioxidative enzymes during Chenopodium rubrum L. ontogenesis in vitro. — Arch. biol. Sci. 60: 223–231, 2008.CrossRefGoogle Scholar
  21. Mitrović, A., Vinterhalter, B., Ćulafić, L.: In vitro propagation of Tacitus bellus. — J. Sci. agr. Res. 66: 33–39, 2005.Google Scholar
  22. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  23. Rajeswari, V., Paliwal, K.: Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L.f. (Benth). — Acta Physiol. Plant. 30: 825–832, 2008.CrossRefGoogle Scholar
  24. Sujatha, M., Sivaraj, N., Satya Prasad, M.: Biochemical and histological changes during in vitro organogenesis in Jatropha integerrima. — Biol. Plant. 43: 167–171, 2000.CrossRefGoogle Scholar
  25. Tang, W., Newton, R.J.: Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. — Plant Physiol. Biochem. 43: 760–769, 2005.PubMedCrossRefGoogle Scholar
  26. Tian, M., Gu, Q., Zhu, M.: The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. — Plant Sci. 165: 701–707, 2003.CrossRefGoogle Scholar
  27. Vatankhah, E., Niknam, V., Ebrahimzadeh, H.: Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus. — Biol. Plant. 54: 509–514, 2010.CrossRefGoogle Scholar
  28. Woodbury, W., Spencer, A.K., Stahman, M.A.: An improved procedure using ferriccyanide for detecting catalase isozymes. — Anal. Biochem. 44: 301–305, 1971.PubMedCrossRefGoogle Scholar
  29. Yonghua, Q., Shanglong, Z., Asghar, S., Lingxiao, Z., Qiaoping, Kunsong, C., Changjie, X.: Regeneration mechanism of Toyonoka strawberry under different colour plastic films. — Plant Sci. 168: 1425–1431, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Mitrović
    • 1
  • D. Janošević
    • 3
  • S. Budimir
    • 2
  • J. Bogdanović Pristov
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  3. 3.Institute of Botany and Botanical Garden „Jevremovac“University of BelgradeBelgradeSerbia

Personalised recommendations