Biologia Plantarum

, Volume 56, Issue 2, pp 321–329 | Cite as

Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis

  • B. ZhouEmail author
  • N. Li
  • Z. Zhang
  • X. Huang
  • H. Chen
  • Z. Hu
  • X. Pang
  • W. Liu
  • Y. Lu
Original Papers


Vegetative growth and reproductive growth strongly competes with each other during panicle development in litchi (Litchi chinensis Sonn.). We herein investigated the roles of hydrogen peroxide and nitric oxide in the competition between growth of rudimentary leaves and panicle development. The results show that the chilling-induced flowering increased H2O2 and NO contents in the mixed buds. Treatments with sodium nitroprusside (SNP), the NO donor, and methyl viologen dichloride hydrate (MV), the superoxide generator, increased NO and H2O2 contents in the mixed buds. MV and SNP treatments promoted abscission of rudimentary leaves and encouraged panicle development before or at the stage of panicle emergence. The nitric oxide synthase inhibitor N ω -nitro-L-arginine methyl ester (L-NAME) and the H2O2 trapper dimethylthiourea (DMTU) inhibited a chilling-induced flowering. SNP promoted the expression of litchi LEAFY homolog (LcLFY). These promotive effects were suppressed by the NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO) and the H2O2 trapper, DMTU. The results suggest that H2O2 and NO promote reproductive growth by inhibiting the growth of rudimentary leaves as well as by promoting the expression of the flower related gene, LcLFY.

Additional key words

flowering LEAFY methyl viologen sodium nitroprusside 



abscisic acid


4-aminofluorescin diacetate


diaminofluorescein diacetate


dichlorofluorescin diacetate




LEAFY homolog


N ω -nitro-L-arginine methyl ester


methyl viologen dichloride hydrate




sodium nitroprusside


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank P. O’Malley and Y.Q. O’Malley for proofreading. This study was funded by the National Natural Science Foundation (30571283, 31071760), 948 Projects of Agricultural Ministry (2006G31), and the Agricultural Industry Project (nyhyzx07-031) by the Ministry of Agriculture.


  1. Ahearn, K.P., Johnson, H.A., Weigel, D., Wagner, D.R.: NFL1, a Nicotiana tabacum LFY-like gene, controls meristem initiation and floral structure. — Plant Cell Physiol. 42: 1130–1139, 2001.PubMedCrossRefGoogle Scholar
  2. Ali, A.G, Lovatt, C.J.: Relationship of polyamines to lowtemperature stress-induced flowering of the ‘Washington’ navel orange (Citrus sinensis L. Osbeck). — J. hort. Sci. Biotechnol. 70: 491–498, 1995.Google Scholar
  3. Arasimowicz, M., Floryszak-Wieczorek, J.: Nitric oxide as a bioactive signalling molecule in plant stress responses. — Plant Sci. 172: 876–887, 2007.CrossRefGoogle Scholar
  4. Bañuelos, G.R., Argumedo, R., Patel, K., Ng, V., Zhou, F., Vellanoweth, R.L.: The developmental transition to flowering in Arabidopsis is associated with an increase in leaf chloroplastic lipoxygenase activity. — Plant Sci. 174: 366–373, 2008.PubMedCrossRefGoogle Scholar
  5. Bartosz, G.: Oxidative stress in plants. — Acta Physiol. Plant. 19: 47–64. 1997.CrossRefGoogle Scholar
  6. Bethke, P.C., Igor, G.L., Reinöhl, V., Jones, R.L.: Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. — Planta 223: 805–812, 2006.PubMedCrossRefGoogle Scholar
  7. Blazquez, M.A., Soowal, L.N., Lee, I., Weigel, D.: LFY expression and flower initiation in Arabidopsis. — Development 124: 3835–3844, 1997.Google Scholar
  8. Bright, J., Desikan, R., Hancock, J.T., Weir, I.S., Neill, S.J.: ABAinduced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. — Plant J. 45: 113–122, 2006.PubMedCrossRefGoogle Scholar
  9. Chen, H.: Studies on flowering induction and differentiation in Litchi chinensis Sonn. with emphasis on their relation to temperature. — Ph.D. Thesis. South China Agricultural University, Guangzhou 2002.Google Scholar
  10. Chen, H.B., Huang, H.B.: Low temperature requirements for floral induction in lychee. — Acta Hort. 665: 195–202, 2005.Google Scholar
  11. Dat, J., Vandenbeele, S., Vranova, E., Van Montagu M., Inzé, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. — Cell. Mol. Life Sci. 57: 779–795, 2000.PubMedCrossRefGoogle Scholar
  12. Delledonne, M., Xia, Y.J., Dixon, R.A., Lamb, C.: Nitric oxide functions as a signal in plant disease resistance. — Nature 394: 585–588, 1998.PubMedCrossRefGoogle Scholar
  13. Desikan, R., Cheung, M.K., Bright, J., Henson, D, Hancock, J.T., Neill, S.J.: ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. — J. exp. Bot. 55: 205–212, 2004.PubMedCrossRefGoogle Scholar
  14. Desikan, R., Griffiths, R., Hancock, J., Neill, S.J.: A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. — PNAS 99: 16314–16318, 2002.Google Scholar
  15. Dodge, A.D.: The mode of action of bipyridylium herbicides, paraquat and diquat. — Endeavour 30: 30–135, 1971.CrossRefGoogle Scholar
  16. Filek, M., Biesaga-Kościelniak, J., Marcińska, I., Cvikrová, M., Macháčková, I., Krekule, J.: Contents of polyamines during vernalization in wheat and the effect of zearalenone. — Biol. Plant. 54: 483–487, 2010.CrossRefGoogle Scholar
  17. García-Mata, C., Lamattina, L.: Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. — Plant Physiol. 126: 1196–1204, 2001.PubMedCrossRefGoogle Scholar
  18. Gould, K.S., Lamotte, O., Klinguer, A., Pugin, A., Wendehenne, D.: Nitric oxide production in tobacco leaf cells: a generalized stress response? — Plant Cell Environ. 26: 1851–1862, 2003.CrossRefGoogle Scholar
  19. Hempel, S.L., Buettner, G.R., O’Malley, Y.Q., Wessels, D.A., Flaherty, D.M.: Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5 (and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. — Free Radical. Biol. Med. 27: 146–159, 1999.CrossRefGoogle Scholar
  20. Huang, H.B., Chen, H.B.: A phase approach towards floral formation in lychee. — Acta Hort. 665: 185–194, 2005.Google Scholar
  21. Kraus, T.E., Fletcher, R.A.: Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved? — Plant Cell Physiol. 35: 45–52, 1994.Google Scholar
  22. Li, N.: Cloning and expression analysis of LFY homologue gene in Litchi (Litchi chinensis Sonn.). — M.D. Thesis, South China Agricultural University, Guangzhou 2008.Google Scholar
  23. Li, W.M., Tao, Y., Yao, Y.X., Hao, Y.J., You, C.X.: Ectopic over-expression of two apple Flowering Locus T homologues, MdFT1 and MdFT2, reduces juvenile phase in Arabidopsis. — Biol. Plant. 54: 639–646, 2010.CrossRefGoogle Scholar
  24. Lü, D., Zhang, X., Jiang, J., An, G.-Y, Zhang, L.R., Song, C.-P: [NO may function in the downstream of H2O2 in ABAinduced stomatal closure in Vicia faba L. ] — J. Plant Physiol. mol. Biol. 31: 62–70, 2005. [In Chin., ab. E]Google Scholar
  25. Ma, Y.-P., Fang, X.-H., Chen, F., Dai, S.-L.: DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues. — Plant Cell Rep. 27: 647–654, 2008.PubMedCrossRefGoogle Scholar
  26. Malerba, M., Crosti, P., Cerana, R.: The fusicoccin-induced accumulation of nitric oxide in sycamore cultured cells is not required for the toxin-stimulated stress-related responses. — Plant Sci. 168: 381–387, 2005.CrossRefGoogle Scholar
  27. Manochai, P., Sruamsiri, P., Wiriya-Alongkorn, W., Naphrom, D., Hegele, M., Bangerth, F.: Year around off season flower induction in longan (Dimocarpus longan Lour.) trees by KClO3 applications: potentials and problems. — Sci. Hort. 104: 379–390, 2005.CrossRefGoogle Scholar
  28. Menzel, C.M., Simpson, D.X.: Effect of temperature on growth and flowering of litchi (Litchi chinensis Sonn.) cultivars. — J. hort. Sci. 63: 349–360, 1988.Google Scholar
  29. Mouradov, A., Cremer, F., Coupland, G.: Control of flowering time: interacting pathways as a basis for diversity. — Plant Cell 14: S111–S130, 2002.Google Scholar
  30. Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T.: Hydrogen peroxide and nitric oxide as signaling molecules in plants. — J. exp. Bot. 53: 1237–1247, 2002.PubMedCrossRefGoogle Scholar
  31. Nunez-Elisea, R., Davenport, T.L.: Flowering of mango trees in containers as influenced by seasonal temperature and water stress. — Sci. Hort. 58: 57–66, 1994.CrossRefGoogle Scholar
  32. Pena, L., Martin-Trillo, M., Juarez, J., Pina, J.A., Navarro, L., Martinez-Zapater, J.M.: Constitutive expression of Arabidopsis LFY or APETALA1 genes in citrus reduces their generation time. — Nature Biotech. 19: 263–267, 2001.CrossRefGoogle Scholar
  33. Rao, N.N., Prasad, K., Kumar, P.R., Vijayraghavan, U.: Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. — PNAS 105: 3646–3651, 2008.Google Scholar
  34. Stöhr, C., Stremlau, S.: Formation and possible roles of nitric oxide in plant roots. — J. exp. Bot. 57: 463–470, 2006.PubMedCrossRefGoogle Scholar
  35. Uchida, A., Jagendorf, A.T., Hibino, T., Takabe, T., Takabe, T.: Effect of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. — Plant Sci. 163: 515–523, 2002.CrossRefGoogle Scholar
  36. Wang, Y., Lin, J.S., Wang, G.X. Role of calcium in nitric oxideinduced programmed cell death in tobacco protoplasts. — Biol. Plant. 54: 471–476, 2010.CrossRefGoogle Scholar
  37. Wang, Y., Lu, W., Li, J., Jiang, Y.: Differential expression of two expansin genes in developing fruit of cracking-susceptible and resistant litchi cultivars. — J. amer. Soc. hort. Sci. 131: 118–121, 2006.Google Scholar
  38. Wagner, D., Sablowski, R.W.M., Meyerowitz, E.M.: Transcription activation of APETALA1 by LEAFY. — Science 285: 582–584, 1999.PubMedCrossRefGoogle Scholar
  39. Weigel, D., Coupland, G.: LFY blooms in aspen. — Nature 377: 482–483, 1995.CrossRefGoogle Scholar
  40. Wilkie, J.D., Sedgley, M., Olesen, T.: Regulation of floral initiation in horticultural trees. — J. exp. Bot. 59: 3215–3228, 2008.PubMedCrossRefGoogle Scholar
  41. Yang, Y.J., Klejnot, J., Yu, X.H., Liu, X.M., Lin, C.T.: Florigen (II): It is a mobile protein. — J. Integr. Plant Biol. 49: 1665–1669, 2007.CrossRefGoogle Scholar
  42. Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X., Tan, M.: Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. — New Phytol. 175: 36–50, 2007.PubMedCrossRefGoogle Scholar
  43. Zhao, X., She, X., Du, Y., Liang, X.: Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco. — Pesticide Biochem. Physiol. 87: 78–84, 2007.CrossRefGoogle Scholar
  44. Zhou, B., Chen, H., Huang, X., Li, N., Hu, Z., Gao, Z., Lu, Y.: Rudimentary leaf abortion with the development of panicle in litchi: changes in ultrastructure, antioxidant enzymes and phytohormones. — Sci. Hort. 117: 288–296, 2008.CrossRefGoogle Scholar
  45. Zhou, B., Chen, H., Huang, X., Wu, G., Hu, Z., Gao, Z.: Changes of antioxidant enzyme activity and hydrogen peroxide concentration in Litchi chinensis during floral differentiation. — Acta Hort. 863: 453–460, 2010a.Google Scholar
  46. Zhou, B., Huang, X., Chen, H., Hu, Z., Gao, Z., Li, N., Lu, Y.: Physiological comparison of abscising rudimentary leaf and vigorously developing panicle in litchi: antioxidant enzymes and phytohormones. — Acta Hort. 863: 461–467, 2010b.Google Scholar
  47. Zhou, B., Wang, J., Guo, Z., Tan, H., Zhu, X.: A simple colorimetric method for determination of hydrogen peroxide in plant tissues. — Plant Growth Regul. 49: 113–118, 2006.CrossRefGoogle Scholar
  48. Zhou, J.H., Pesacreta, T.C., Brown, R.C.: RNA isolation without gel formation from oligosaccharide rich onion epidermis. — Plant mol. Biol. Rep. 17: 397–407, 1999.CrossRefGoogle Scholar
  49. Zhou, L., Zhou, Y.-T., Wang, M.-L. Wang, H.-Y., Zhao, Y.: Expressions and dimerization affinities of three highly identical APETALA3 genes in Brassica napus. — Biol. Plant. 54: 33–40, 2010c.CrossRefGoogle Scholar
  50. Zimmermann, P., Heinlein, C., Orendi, G., Zentgraf, U.: Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. — Plant Cell Environ. 29: 1049–1060, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • B. Zhou
    • 1
    Email author
  • N. Li
    • 1
  • Z. Zhang
    • 1
  • X. Huang
    • 1
  • H. Chen
    • 1
  • Z. Hu
    • 1
  • X. Pang
    • 2
  • W. Liu
    • 1
  • Y. Lu
    • 1
  1. 1.College of HorticultureSouth China Agricultural UniversityGuangzhouP.R. China
  2. 2.College of Life ScienceSouth China Agricultural UniversityGuangzhouP.R. China

Personalised recommendations