Advertisement

Biologia Plantarum

, Volume 56, Issue 3, pp 458–464 | Cite as

The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers

  • S. -M. Chen
  • C. -H. Li
  • X. -R. Zhu
  • Y. -M. Deng
  • W. Sun
  • L. -S. Wang
  • F. -D. Chen
  • Z. Zhang
Article

Abstract

In order to provide additional information on the coloration of chrysanthemum flowers, the flavonoid composition and the expression of six structural genes involved in anthocyanin pathway in the ray florets of a pink flowering (cv. H5) and two white flowering (cvs. Keikai and Jinba) Chrysanthemum grandiflorum cultivars were examined. HPLCDAD/ESI-MSn analysis showed that cyanidin 3-O-(6″-O-malonylglucoside) and cyanidin 3-O-(3″,6″-O-dimalonylglucoside) were the two major flavonoids presented in H5, while white flowering cultivars contained flavones instead of anthocyanins. Nine flavone derivatives were detected in the three cultivars, the amount of each flavone varied upon cultivars, and seven of these were identified as luteolin 7-O-arabinosylglucuronide, apigenin 7-O-glucoside, luteolin 7-O-malonylglucoside, apigenin 7-O-malonylglucoside, chrysoeriol 7-O-malonylglucoside, acacetin 7-O-rutinoside and acacetin 7-O-malonylglucoside. The two white flowering cultivars showed similar total flavonoid content, which was about two fold higher than that in H5. A high expression of the genes encoding dihydroflavonol 4-reductase and 3-O-glucosyltransferase was detected only in H5 but not in Keikai or Jinba. Chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, and flavonoid 3′-hydroxylase were expressed in all flowers, suggesting that the lack of anthocyanin in white flowering cultivars cannot be due to any blockage of their expression.

Additional key words

Chrysanthemum grandiflorum cyanidin flavone flower coloration structural gene 

Abbreviations

Ac-7-MalGlc

acacetin 7-O-malonylglucoside

Ac-7-Rut

acacetin 7-O-rutinoside

ANS

anthocyanidin synthase

ANR

anthocyanidin reductase

Ap-7-G

apigenin 7-O-glucoside

Ap-7-MalGlc

apigenin 7-O-malonylglucoside

Ch-7-MalGlc

chrysoeriol 7-O-malonylglucoside

CHI

chalcone isomerase

CHS

chalcone synthase

Cy-3-MalGlc

cyanidin 3-O-(6″-Omalonylglucoside)

Cy-3-MalMalGlc

cyanidin 3-O-(3″, 6″-O-dimalonylglucoside)

DFR

dihydroflavonol 4-reductase

F3H

flavanone 3-hydroxylase

F3′H

flavonoid 3′-hydroxylase

FNS

flavone synthase

3GT

3-O-glucosyltransferase

Lu-7-AraGluc

luteolin 7-O-arabinosylglucuronide

Lu-7-MalGlc

luteolin 7-O-malonylglucoside

OMT

O-methyltransferase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, N., Maekawa, M., Noda, K.: Anthocyanin accumulation and expression pattern of anthocyanin biosynthesis genes in developing wheat coleoptiles. — Biol. Plant. 53: 223–228, 2009.CrossRefGoogle Scholar
  2. Castañeda-Ovando, A., Pacheco-Hernández, M.L., Páez-Hernández, M.A., Rodríguez J.A., Galán-Vidal, CA.: Chemical studies of anthocyanins: a review. — Food Chem. 113: 859–871, 2009.CrossRefGoogle Scholar
  3. Feyissa, D.N., Løvdal, T., Olsen, K.M., Slimestad, R., Lillo, C.: The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. — Planta 230: 747–754, 2009.PubMedCrossRefGoogle Scholar
  4. Forkmann, G., Stefan, M.: Metabolic engineering and applications of flavonoids. — Curr. Opin. Biotechnol. 12: 155–160, 2001.PubMedCrossRefGoogle Scholar
  5. Fossen, T., Andersen, ø.M.: Cyanidin 3-O-(6″-succinyl-β- glucopyranoside) and other anthocyanins from Phragmites australis. — Phytochemistry 49: 1065–1068, 1998.CrossRefGoogle Scholar
  6. Honda, C., Nobuhiro, K., Masato, W., Satoru, K., Shozo, K., Junichi, S., Zhang, Z.L., Tomomi, T., Takaya, M.: Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. — Plant Physiol. Biochem. 40: 955–962, 2002.CrossRefGoogle Scholar
  7. Ismail, G.S.M., Mohamed, H.E.: Alteration in growth and thylakoid membrane lipid composition of Azolla caroliniana under phosphate deficiency. — Biol. Plant. 54: 671–676, 2010.CrossRefGoogle Scholar
  8. Kereamy, A.E., Chervin, C., Souquet, J.M., Moutounet, M., Monje, M.C., Nepveu, F., Mondies, H., Ford, C.M., Van Heeswijk, R., Roustan, J.P.: Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripening. — Plant Sci. 163: 449–454, 2002.CrossRefGoogle Scholar
  9. Lai, J.P., Lim, Y.H., Su, J., Shen, H.M., Ong, C.N.: Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. — J. Chromatogr. 848: 215–225, 2007.CrossRefGoogle Scholar
  10. Lee, G.J., Chung, S.J., Park, I.J., Lee, J.S., Kim, J.B., Kim, D.S., Kang, S.Y.: Variation in the phenotypic features and transcripts of color mutants of chrysanthemum (Dendranthema grandiflorum) derived from gamma ray mutagenesis. — J. Plant Biol. 51: 418–423, 2008.CrossRefGoogle Scholar
  11. Li, C.H., Du, H., Wang, L.S., Shu, Q.Y., Zheng, Y.R., Xu, Y.J., Zhang, J.J., Zhang, J., Yang, R.Z., Ge, Y.X.: Flavonoid composition and antioxidant activity of tree peony (Paeonia, section Moutan) yellow flowers. — J. Agr. Food Chem. 57: 8496–8503, 2009.CrossRefGoogle Scholar
  12. Lin, L.Z., Harnly, J.M.: A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. — J. Agr. Food Chem. 55: 1084–1096, 2007.CrossRefGoogle Scholar
  13. Lu, X., Zhou, W., Gao F.: Chromosomal location of 45S rDNA and dfr gene in Citrus sinensis. — Biol. Plant. 54: 798–800, 2010.CrossRefGoogle Scholar
  14. Mato, M., Onozaki, T., Ozeki, Y., Higeta, D., Itoh, Y., Yoshimoto, Y., Ikeda, H., Yoshida, H., Shibata, M.: Flavonoid biosynthesis in white-flowering Sim carnations (Dianthus caryophyllus). — Sci. Hort. 84: 333–347, 2000.CrossRefGoogle Scholar
  15. Nakatsuka, A., Mizuta, D., Kii, Y., Miyajima, I., Kobayashi, N.: Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. — Sci Hort. 118: 314–20, 2008.CrossRefGoogle Scholar
  16. Nakayama, M., Koshioka, M., Shibata, M., Hiradate, S., Sugie, H., Yamaguchi, M.: Identification of cyanidin 3-O-(3″,6″- O-dimalonyl-beta-glucopyranoside) as a flower pigment of chrysanthemum (Dendranthema grandiflora). — Biosci. Biotechnol. Biochem. 6: 1607–1608, 1997.CrossRefGoogle Scholar
  17. Nesi, N., Jond, C., Debeaujo, I., Caboche, M., Lepineic, L.: The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. — Plant Cell 13: 2099–2114, 2001.PubMedCrossRefGoogle Scholar
  18. Prasain, J.K., Wang, C.C., Barnes, S.: Mass spectrometric methods for the determination of flavonoids in biological samples. — Free Radical Biol. Med. 37: 1324–1350, 2004.CrossRefGoogle Scholar
  19. Rusak, G., Cerni, S., Stupin Polancec, D., Ludwig-Müller J.: The responsiveness of the IAA2 promoter to IAA and IBA is differentially affected in Arabidopsis roots and shoots by flavonoids. — Biol. Plant. 54: 403–414, 2010.CrossRefGoogle Scholar
  20. Saito, N., Toki, K., Honda, T., Kawase, K.: Cyanidin 3- malonylglucuronylglucoside in Bellis and cyanidin 3- malonylglucoside in Dendranthema. — Phytochemistry 27: 2963–2966, 1988.CrossRefGoogle Scholar
  21. Schwinn, K.E., Davies, K.M.: Flavonoids. -In: Davies, K.M. (ed.): Plant Pigments and their Manipulation. Pp. 92–149. Blackwell Press, Oxford 2004.Google Scholar
  22. Schwinn, K.E., Kenneth, R.M., Nigel, K.G.: Floral flavonoids and the potential for pelargonidin biosynthesis in commercial chrysanthemum cultivars. — Phytochemistry 35: 145–150, 1993.CrossRefGoogle Scholar
  23. Stich, K., Eidenberger, T., Wurst, F., Forkmann, G.: Enzymatic conversion of dihydrofavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). — Planta 187: 103–108, 1992.CrossRefGoogle Scholar
  24. Yang, D.H., Yun, P.Y., Park, S.Y., Plaha, P., Lee, D.S., Hwang, Y.S., Kim, Y.A., Lee, J.S., Han, B.H., Lee, S.Y., Suh, E.J., Lim, Y.P.: Cloning, characterization and expression of a lateral suppressor-like gene from chrysanthemum (Dendranthema grandiflorum Kitamura). — Plant Physiol. Biochem. 43: 1044–1052, 2005.PubMedCrossRefGoogle Scholar
  25. Yang, R.Z., Wei, X.L., Gao, F.F., Wang, L.S., Zhang, H.J., Xu, Y.J., Li, C.H., Ge, Y.X., Zhang, J.J., Zhang, J.: Simultaneous analysis of anthocyanins and flavonols in petals of Lotus nelumbo cultivars by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry. — J. Chromatogr. 1216: 106–112, 2009.CrossRefGoogle Scholar
  26. Zhang, J.J., Wang, L.S., Shu, Z., Li, C., Zhang, J., Wei, X.L., Tian, D.K.: Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony. — Sci. Hort. 114: 104–111, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • S. -M. Chen
    • 1
  • C. -H. Li
    • 2
    • 3
  • X. -R. Zhu
    • 1
  • Y. -M. Deng
    • 1
  • W. Sun
    • 4
    • 5
  • L. -S. Wang
    • 2
  • F. -D. Chen
    • 1
  • Z. Zhang
    • 1
  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingChina
  2. 2.Beijing Botanical Garden, Institute of Botanythe Chinese Academy of SciencesBeijingChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina
  4. 4.College of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
  5. 5.Urumqi Botanical GardenUrumqiChina

Personalised recommendations