Biologia Plantarum

, Volume 56, Issue 3, pp 484–492 | Cite as

Isolation and expression of a cold-responsive gene PtCBF in Poncirus trifoliata and isolation of citrus CBF promoters

  • L. G. He
  • H. L. Wang
  • D. C. Liu
  • Y. J. Zhao
  • M. Xu
  • M. Zhu
  • G. Q. Wei
  • Z. H. Sun
Article

Abstract

C-repeat/dehydration-responsive element binding factor (CBF) plays important roles in cold response network in plants. Here, one member of CBF coding gene family in trifoliate orange (Poncirus trifoliata), designated as PtCBF, was isolated. Semi-quantitative reverse transcription-polymerase chain reactions showed up-regulation of PtCBF not only under low temperature but also induced by abscisic acid. Additionally, the CBF genomic fragments in four citrus species including trifoliate orange, sweet orange (Citrus sinensis), pummel (Citrus grandis) and rough lemon (Citrus jambhiri) were isolated with complete open reading frames. According to the results of alignment analysis between full length cDNA and genomic DNA sequences in trifoliate orange, there were no introns in PtCBF. Moreover, the results of multiple sequence alignment analysis and phylogenetic analysis on putative protein sequences suggested that the AP2 DNA binding domains and CBF signature sequences were highly conserved in four citrus CBF proteins. Finally, the CBF promoters in above citrus species were isolated, which provides some information concerning promoter function.

Additional key words

abscisic acid Citrus grandis Citrus jambhiri Citrus sinensis low temperature trifoliate orange 

Abbreviations

ABA

abscisic acid

CBF

C-repeat/dehydration-responsive element binding factor

RT-PCR

semi-quantitative reverse transcription-polymerase chain reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badawi, M., Danyluk, J., Boucho, B., Houde, M., Sarhan, F.: The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. — Mol. Genet. Genomics 277: 533–554, 2007.PubMedCrossRefGoogle Scholar
  2. Baker, S.S., Wilhelm, K.S., Thomashow, M.F.: The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. — Plant mol. Biol. 24: 701–713, 1994.PubMedCrossRefGoogle Scholar
  3. Benedict, C., Skinner, J.S., Meng, R., Chang, Y., Bhalerao, R., Huner, N.P., Finn, C.E., Chen, T.H., Hurry, V.: The CBF1-dependent low temperature signalling pathway, regulon, and increase in freeze tolerance are conserved in Populus spp.. — Plant Cell Environ. 29: 1259–1272, 2006.PubMedCrossRefGoogle Scholar
  4. Cai, Q.Y., Moore, G.A., Guy, C.L.: An unusual Group 2 LEA gene family in citrus responsive to low temperature. — Plant mol. Biol. 29: 11–23, 1995.PubMedCrossRefGoogle Scholar
  5. Champ, K.I., Febres, V.J., Moore, G.A.: The role of CBF transcriptional activators in two citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. — Physiol. Plant. 129: 529–541, 2007.CrossRefGoogle Scholar
  6. Cheng, Y.J., Guo, W.W., Yi, H.L., Pang, X.M., Deng, X.X.: An efficient protocol for genomic DNA extraction from Citrus species. — Plant mol. Biol. Rep. 21(Suppl.): 177a–177g, 2003.CrossRefGoogle Scholar
  7. El Kayal, W., Navarro, M., Marque, G., Keller, G., Marque, C., Teulieres, C.: Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. — J. exp. Bot. 57: 2455–2469, 2006.PubMedCrossRefGoogle Scholar
  8. Fowler, S.G., Cook, D., Thomashow, M.F.: Low temperature induction of Arabidopsis CBF1, 2 and 3 is gated by the circadian clock. — Plant Physiol. 137: 961–968, 2005.PubMedCrossRefGoogle Scholar
  9. Gao, M.J., Allard, G., Byass, L., Flanagan, A.M., Singh, J.: Regulation and characterization of four CBF transcription factors from Brassica napus. — Plant Mol. Biol. 49: 459–471, 2002.PubMedCrossRefGoogle Scholar
  10. Gilliland, L.U., Pawloski, L.C., Kandasamy, K., Meaghe, R.B.: Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. — Plant J. 33: 319–328, 2003.PubMedCrossRefGoogle Scholar
  11. Gilmour, S.J., Fowler, S.G., Thomashow, M.F.: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. — Plant mol. Biol. 54: 767–781, 2004.PubMedCrossRefGoogle Scholar
  12. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. — Plant Physiol. 124: 1854–1865, 2000.PubMedCrossRefGoogle Scholar
  13. Gutha, L.R., Reddy, A.R.: Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. — Plant mol. Biol. 68: 533–555, 2008.PubMedCrossRefGoogle Scholar
  14. Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P., Laing, W.A.: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. — Plant Methods 1: 13, 2005.PubMedCrossRefGoogle Scholar
  15. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. — Science 280:104–106, 1998.PubMedCrossRefGoogle Scholar
  16. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Natur. Biotechnol. 17: 287–291, 1999.CrossRefGoogle Scholar
  17. Kim, H.J., Kim, Y.K., Park, J.Y., Kim, J.: Light signaling mediated by phytochrome plays an important role in coldinduced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. — Plant J. 29: 693–704, 2002.PubMedCrossRefGoogle Scholar
  18. Knight, H., Zarka, D.G., Okamoto, H., Thomashow, M.F., Knight, M.R.: Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. — Plant Physiol. 135: 1710–1717, 2004.PubMedCrossRefGoogle Scholar
  19. Liu, Q., Xu, J., Liu, Y.Z., Zhao, X.L., Deng, X.X., Guo, L.L., Gu, J.Q.: A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). — J. exp. Bot. 58: 4161–4171, 2007.PubMedCrossRefGoogle Scholar
  20. Meng, S.S., Dane, F., Si, Y., Ebel, R., Zhang, C.K.: Gene expression analysis of cold treated versus cold acclimated Poncirus trifoliata. — Euphytica 164: 209–219, 2008.CrossRefGoogle Scholar
  21. Novillo, F., Medina, J., Salinas, J.: Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. — Proc. nat. Acad. Sci. USA 104: 21002–21007, 2007.PubMedCrossRefGoogle Scholar
  22. Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K., Yamaguchi-Shinozaki, K.: Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.. — Plant Cell Physiol. 45: 1042–1052, 2004.PubMedCrossRefGoogle Scholar
  23. Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.S., Lee, I.: Crosstalk between cold response and flowering in ARABIDOPSIS is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. — Plant Cell 21: 3185–3197, 2009.PubMedCrossRefGoogle Scholar
  24. Svensson, J.T., Crosatti, C., Campoli, C., Bassi, R., Stanca, A.M., Close, T.J., Cattivelli, L.: Transcriptome analysis of cold acclimation in barley albina and xantha mutants. — Plant Physiol. 141: 257–270, 2006.PubMedCrossRefGoogle Scholar
  25. Talon, M., Gmitter, F.G.: Citrus genomics. — Int. J. Plant Genomics 2008: 1–17, 2008.CrossRefGoogle Scholar
  26. Terauchi, R., Kahl, G.: Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Pal and Pgi genes from yams (Dioscorea). — Mol. gen. Genet. 263: 554–560, 2000.PubMedCrossRefGoogle Scholar
  27. Thomashow, M.F., Gilmour, S.J., Stockinger, E.J., Jaglo-Ottosen, K.R., Zarka, D.G.: Role of the Arabidopsis CBF transcriptional activators in cold acclimation. — Physiol. Plant. 112: 171–175, 2001.CrossRefGoogle Scholar
  28. Wang, H.L., Tao, J.J., He, L.G., Zhao, Y.J., Xu, M, Liu, D.C., Sun, Z.H.: cDNA cloning and expression analysis of a Poncirus trifoliata CBF gene. — Biol. Plant. 53: 625–630, 2009.CrossRefGoogle Scholar
  29. Wang, Q.Y., Guan, Y.C., Wu, Y.R., Chen, H.L., Chen, F., Chu, C.C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. — Plant mol. Biol. 67: 589–602, 2008.PubMedCrossRefGoogle Scholar
  30. Xiao, H.G., Siddiqua, M., Braybrook, S., Nassuth, A.: Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. — Plant Cell Environ. 29: 1410–1421, 2006.PubMedCrossRefGoogle Scholar
  31. Xue, G.P.: Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNAbinding activity. — Nucl. Acids Res. 30(Suppl.): e77, 2002.PubMedCrossRefGoogle Scholar
  32. Zhang, C.K., Lang, P., Dane, F., Ebel, R.C., Singh, N.K., Locy, R.D., Dozier, W.A.: Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata). — Plant Cell Rep. 23: 764–769, 2005.PubMedCrossRefGoogle Scholar
  33. Zhang, X., Fowler, S.G., Cheng, H.M., Lou, Y.G., Rhee, S.Y., Stockinger, E.J., Thomashow, M.F.: Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. — Plant J. 39: 905–919, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • L. G. He
    • 1
  • H. L. Wang
    • 1
  • D. C. Liu
    • 1
  • Y. J. Zhao
    • 1
  • M. Xu
    • 2
  • M. Zhu
    • 1
  • G. Q. Wei
    • 1
  • Z. H. Sun
    • 1
    • 2
  1. 1.College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP.R. China
  2. 2.Institute of Fruit and TeaHubei Academy of Agricultural SciencesWuhanP.R. China

Personalised recommendations