Biologia Plantarum

, Volume 56, Issue 1, pp 192–196 | Cite as

Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana

  • Y. H. Li
  • Y. J. Liu
  • X. L. Xu
  • M. Jin
  • L. Z. An
  • H. ZhangEmail author
Brief Communication


Brassinosteroids (BRs) have been proposed to increase the resistance of plants to drought stress. The effect of foliar application of 0.1 μM 24-epibrassinolide (EBR) on chlorophyll (Chl) content, photosystem 2 (PS 2) photochemistry, membrane permeability, lipid peroxidation, relative water content (RWC), proline content, and the antioxidant system in drought-stressed Chorispora bungeana plants was investigated. The results showed that polyethylene glycol (PEG) induced water stress decreased RWC, Chl content and variable to maximum Chl fluorescence ratio (Fv/Fm) less in plants pretreated with EBR than in non-pretreated plants. In addition, lipid peroxidation, measured in terms of malondialdehyde content, membrane permeability and proline content in drought-stressed plants were less increased in EBR pretreated plants, while antioxidative enzyme activities and reduced ascorbate and glutathione contents were more increased in EBR pretreated than in non-pretreated plants. These results suggested that EBR could improve plant growth under drought stress

Additional key words

antioxidative enzymes brassinosteroids chlorophyll lipid peroxidation membrane permeability photosystem proline reactive oxygen species 



ascorbate peroxidase


reduced ascorbate










ethylenediaminetetraacetic acid


electrolyte leakage

F0, Fm

minimum and maximum fluorescence in dark-adapted leaves


variable to maximum fluorescence ratio


glutathione reductase


reduced glutathione




polyethylene glycol

PS 2

photosystem 2


reactive oxygen species


relative water content


superoxide dismutase


the quantum yield of PS 2


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the National Natural Science Foundation of China (grant No. 30900172), the National Outstanding Youth Foundation of China (No. 30625008), and the Major Project of Cultivating New Varieties of Transgenic Organisms (2009ZX08009-029B, 2008ZX08009-003)


  1. Abassi, N.A., Kushad, M.M., Endress, A.G.: Active oxygen scavenging enzymes activities in developing apple flowers and fruits. — Sci. Hort. 74: 183–194, 1998.CrossRefGoogle Scholar
  2. Ábrahám, E., Rigó, G., Székely, G., Nagy, R., Koncz, C., Szabados, L.: Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. — Plant mol. Biol. 51: 363–372, 2003.PubMedCrossRefGoogle Scholar
  3. Ali, B., Hayat, S., Ahmad, A.: 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L). — Environ. exp. Bot. 59: 217–223, 2007.CrossRefGoogle Scholar
  4. Bajji, M., Lutts, S., Kinet, J.M.: Water deficit effect on solution contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. — Plant Sci. 160: 669–681, 2001.PubMedCrossRefGoogle Scholar
  5. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  6. Blum, A., Ebercon, A.: Cell membrane stability as a measure of drought and heat tolerance in wheat. — Crop Sci. 21: 43–47, 1981.CrossRefGoogle Scholar
  7. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  8. Cai, Y.F., Zhang, S.B., Hu, H., Li, S.Y.: Photosynthetic performance and acclimation of Incarvillea delavayi to water stress. — Biol. Plant. 54: 89–96, 2010.CrossRefGoogle Scholar
  9. Clouse, S.D., Sasse, J.M.: Brassinosteroids: essential regulators of plant growth and development. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 427–451, 1998.PubMedCrossRefGoogle Scholar
  10. Correia, M.J., Osório, M.L., Osório, J., Barrote, I., Martins, M., David, M.M.: Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. — Environ. exp. Bot. 58: 75–84, 2006.CrossRefGoogle Scholar
  11. Fariduddin, Q., Yusuf, M., Hayat, S., Ahmad, A.: Effect of 28- homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. — Environ. exp. Bot. 66: 418–424, 2009.CrossRefGoogle Scholar
  12. Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. — Planta 133: 21–25, 1976.CrossRefGoogle Scholar
  13. Foyer, C.H., Lelandais, M., Kunert, K.J.: Photooxidative stress in plants. — Physiol. Plant. 92: 696–717, 1994.CrossRefGoogle Scholar
  14. Foyer, C.H., Noctor, G.: Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. — Plant Cell Environ. 28: 1056–1071, 2005.CrossRefGoogle Scholar
  15. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  16. Griffith, O.W.: Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. — Anal. Biochem. 106: 207–212, 1980.PubMedCrossRefGoogle Scholar
  17. Hodges, M.D., Delong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. — Planta 207: 604–611, 1999.CrossRefGoogle Scholar
  18. Jain, M., Mathur, G., Koul, S., Sarin, N.B.: Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). — Plant Cell Rep. 20: 463–468, 2001.CrossRefGoogle Scholar
  19. Law, M.Y., Charles, S.A., Halliwell, B.: Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and paraquat. — Biochem. J. 210: 899–903, 1983.PubMedGoogle Scholar
  20. Lee, B.R., Li, L.S., Jung, W.J., Jin, Y.L., Avice, J.C., Ourry, A., Kim, T.H.: Water deficit-induced oxidative stress and the activation of antioxidant enzymes in white clover leaves. — Biol. Plant. 53: 505–510, 2009.CrossRefGoogle Scholar
  21. Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  22. Lin, K.H., Pu, S.F.: Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. — Biol. Plant. 54: 664–670, 2010.CrossRefGoogle Scholar
  23. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. — J. exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  24. Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., Aparicio-Tejo, P.: Drought induces oxidative stress in pea plants. — Planta 194: 346–352, 1994.CrossRefGoogle Scholar
  25. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  26. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  27. Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Yu, J.Q., Nogues, S.: Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. — J. Plant Growth Regul. 27: 49–57, 2008.CrossRefGoogle Scholar
  28. Reddy, M.P., Vora, A.B.: Changes in pigment composition, Hill reaction activity and saccharide metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. — Photosynthetica 20: 50–55, 1986.Google Scholar
  29. Santos, M.G., Ribeiro, R.V., Machado, E.C., Pimentel, C.: Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. — Biol. Plant. 53: 229–236, 2009.CrossRefGoogle Scholar
  30. Stewart, R.R.C., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. — Plant Physiol. 65: 245–248, 1980.PubMedCrossRefGoogle Scholar
  31. Stobart, A.K., Griffits, W.T., Bukhari, I., Sherwood, R.P.: The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. — Physiol. Plant. 63: 293–298, 1985.CrossRefGoogle Scholar
  32. Veljovic-Jovanovic, S., Kukavica, B., Stevanovic, B., Navari-Izzo, F.: Senescence and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica. — J. exp. Bot. 57: 1759–1768, 2006.PubMedCrossRefGoogle Scholar
  33. Xia, X.J., Wang, Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z.X., Yu, J.Q.: Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. — Plant Physiol. 150: 801–814, 2009.PubMedCrossRefGoogle Scholar
  34. Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Nogues, S.: A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. — J. exp. Bot. 55: 1135–1143, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Y. H. Li
    • 1
    • 2
  • Y. J. Liu
    • 1
  • X. L. Xu
    • 1
  • M. Jin
    • 1
  • L. Z. An
    • 1
  • H. Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Arid and Pasture Agroecology of Ministry of Education, School of Life SciencesLanzhou UniversityLanzhouGansu, P.R. China
  2. 2.Department of Life SciencesZhengzhou Normal UniversityZhengzhouHenan, P.R. China

Personalised recommendations