Biologia Plantarum

, Volume 56, Issue 1, pp 15–24 | Cite as

Photosynthetic and leaf anatomical characteristics of Castanea sativa: a comparison between in vitro and nursery plants

  • P. L. Sáez
  • L. A. Bravo
  • K. L. Sáez
  • M. Sánchez-Olate
  • M. I. Latsague
  • D. G. Ríos
Original Papers


The anatomic and functional leaf characteristics related to photosynthetic performance of Castanea sativa growing in vitro and in nursery were compared. The irradiance saturated photosynthesis in in vitro grown plantlets was significantly lower compared to nursery plants (65 vs. 722 μmol m−2 s−1). The maximum photosynthetic rate (PNmax) was 4.0 and 10.0 μmol(CO2) m−2 s−1 in in vitro microshoots and nursery plant leaves, respectively. Carboxylation efficiency (CE) and electron transport rate (ETR) were three-folds higher in nursery plants than in microshoots. The nonphotochemical quenching (NPQ) was saturated at 80 μmol m−2 s−1 in microshoots suggesting limited photoprotection by thermal dissipation. The microshoots had wide open, spherical stomata and higher stomatal density than nursery plants and they had almost no epicuticular wax. Consequently, the microshoots had high stomatal conductance and high transpiration rate. These anatomic and functional leaf characteristics are likely major causes of the low survival rates of plantlets after ex vitro transfer.

Additional key words

chloroplasts fluorescence micropropagation net photosynthetic rate stomata transpiration rate 





carboxylation efficiency


Driver and Kuniyuki medium


electron transport rate


stomatal conductance


indolebutyric acid


non-photochemical quenching


photon flux density


net photosynthetic rate

PS 2

photosystem 2


primary quinone acceptor of PS 2


photochemical quenching


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank projects INNOVA BIOBIO No. 4 B3-234 and DIUC 210.142.029-1.0 from the Direction of Investigations of the University of Concepcion, for the financial support of this work and Adrianne Nicotra for review of the manuscript. Patricia L. Sáez thanks CONICYT for her doctoral fellowship.


  1. Apóstolo, N., Brutti, C., Llorente, B.: Leaf anatomy of Cynara scolymus L. in successive micropropagation stages. — In Vitro cell. dev. Biol. Plant. 41: 307–313, 2005.CrossRefGoogle Scholar
  2. Apóstolo, N., Llorente, B.: Anatomy of normal and hyperhydric leaves and shoots of in vitro grown Simmondsia chinesis (Link) Schn. — In Vitro cell. dev. Biol. Plant. 36: 243–249, 2000.CrossRefGoogle Scholar
  3. Azcón-Bieto, J.: Inhibition of photosynthesis by carbohydrates in wheat leaves. — Plant Physiol. 73: 681–686, 1983.PubMedCrossRefGoogle Scholar
  4. Badr, A., Desjardins, Y.: Sugar uptake and metabolism in tissue cultured potato plantlets cultured in liquid medium. — Acta Hort. 748: 265–273, 2007.Google Scholar
  5. Bréhélin, C., Kessler, F., Van Wijk. KJ.: Plastoglobules: versatile lipoprotein particles in plastids. — Trend Plant Sci. 12: 260–266, 2007.CrossRefGoogle Scholar
  6. Brutti, C., Rubio, E., Llorente, B., Apóstolo, N.: Artichoke leaf morphology and surface features in different micropropagation stages. — Biol. Plant. 45: 197–204, 2002.CrossRefGoogle Scholar
  7. Carvalho, L., Amâncio, S.: Effect of ex vitro conditions on growth and adcquisition of autotrophic behaviour during the acclimatisation of chestnut regenerated in vitro. — Sci. Hort. 95: 151–164, 2002.CrossRefGoogle Scholar
  8. Carvalho, L., Osòrio, M., Chaves, M., Amâncio, S.: Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. — Plant Cell Tissue Organ Cult. 67: 271–280, 2001.CrossRefGoogle Scholar
  9. Costa, F., Moacir, P., Scherwinski, J., De Castro, M.: Anatomical and physiological modifications of micropropagated “caipira” banana plants under natural light. — Sci. Agr. 66: 323–330, 2009.Google Scholar
  10. Debergh, P.C., Aitkin-Christie, J., Cohen, J., Grout, D.B., Von Arnold, S., Zimmerman, R., Ziv, M.: Reconsideration of the term’ vitrification’ as used in micropropagation with special reference to water potential. — Physiol. Plant. 53: 181–187, 1992.CrossRefGoogle Scholar
  11. De las Rivas, J.: [Using light energy in photosynthesis]. — In: Azcón-Bieto, J., Talón, M. (ed.): Fundamentos de Fisiología Vegetal [Fundamentals of Plant Physiology]. Pp 155–172. Mc Graw Hill Interamerica, Barcelona 2003. [In Span.]Google Scholar
  12. Demmig-Adams, B., Gilmore, A., Adams, W. III.: In vivo functions of carotenoids in higher plants. — FASEB J. 10: 403–412, 1996.PubMedGoogle Scholar
  13. Fabbri, A., Sutter, E., Dunston, S.K.: Anatomical changes in persistent leaves of tissue cultured strawberry plants after removal from culture. — Sci. Hort. 28: 331–337, 1986.CrossRefGoogle Scholar
  14. Fila, G., Badeck, F., Meyer, S., Cerovis, Z., Ghashghaie, J.: Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. — J. exp. Bot. 57: 2687–2695, 2006.PubMedCrossRefGoogle Scholar
  15. Fila, G., Ghashghaie, J., Hoarau, J., Cornic, G.: Photosynthesis, leaf conductance and water relations of in vitro cultured grapevine rootstock in relation to acclimatization. — Physiol. Plant. 102: 411–418, 1998.CrossRefGoogle Scholar
  16. Franck, N., Vaast, P., Génard, M., Dauzat, J.: Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. — Tree Physiol. 26: 517–525, 2006.PubMedCrossRefGoogle Scholar
  17. Fujiwara, K., Kira, S., Kozai, T.: Time course of CO2 exchange of potato cultures in vitro with different sucrose concentrations in the culture medium. — J. Agr. Meteorol.. 48: 49–56, 1992.CrossRefGoogle Scholar
  18. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  19. Gray, G., Ivanov, A., Krol, M., Huner, N.: Adjustment of thylakoid plastoquinone content and electron donor pool size in response to growth temperature and growth irradiance in winter rye (Secale cereale L.). — Photosynth. Res. 56: 209–221, 1998.CrossRefGoogle Scholar
  20. Grouneva, I., Jakob, T., Wilhelm, C., Goss, R.: Evidence for a fast, xanthophyll cycle independent NPQ mechanism in the diatom C. meneghiniana. — In: Allen, J., Gantt, E., Golbeck, J., Osmond, B. (ed.): Photosynthesis. Energy from the Sun. Pp. 1013–1016. Springer. Leipzig 2008.Google Scholar
  21. Hazarika, B.: Morpho-physiological disorders in in vitro culture of plants. — Sci. Hort. 108: 105–120, 2006.CrossRefGoogle Scholar
  22. Herbinger, K., Then, C., Low, M., Haberer, K., Alexous, M., Koch, N., Remele, K., Heerdt, C., Grill, D., Rennenberg, H., Häberle, KH., Matyssek, R., Tausz, M., Weiser, G.: Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. — Environ. Pollut. 137: 476–482, 2005.PubMedCrossRefGoogle Scholar
  23. Horton, P., Ruban, A.: Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. — J. exp. Bot. 56: 365–373, 2005.PubMedCrossRefGoogle Scholar
  24. Ishibashi, M., Sonoike, K., Watanabe, A.: The inhibition of photosynthesis alters exposure of bean leaves to various low levels of CO2. — Plant Cell. Physiol. 38: 619–624, 1997.Google Scholar
  25. Johansson, M., Kronestedt-Robards, E., Robards, A.: Rose leaf structure in relation to different stages of micropropagation. — Protoplasma 166: 165–176, 1992.CrossRefGoogle Scholar
  26. Joshi, P., Joshi, N., Purohit, S.: Stomata characteristics during micropropagation of Wrightia tomentosa. — Biol. Plant. 50: 275–278, 2006.CrossRefGoogle Scholar
  27. Koch, K.E.: Carbohydrate-modulated gene expression in plants. — Annu. Rev. Plant Physiol. Plant. mol. Biol. 47: 509–540, 1996.PubMedCrossRefGoogle Scholar
  28. Kozai, T., Fujiwara, M., Nayashi, J., Aitken-Christie, J.: The in vitro environment and its control in micropropagation. — In: Kurata, K., Kozai, T. (ed): Transplant Production Systems. Pp. 247–282. Kluwer Academic Publishers, Dordrecht 1992.CrossRefGoogle Scholar
  29. Kramer, D., Johnson, G., Kiirats, O., Edwards, G.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. — Photosynth. Res. 79: 209–218, 2004.PubMedCrossRefGoogle Scholar
  30. Krapp, A., Stitt, M.: Influence of high carbohydrate content on the activity of plastidic and cytosolic isoenzyme pairs in photosynthetic tissues. — Plant Cell Environ. 17: 861–866, 1994.CrossRefGoogle Scholar
  31. Kraus, J.E., Arduim, M.: Manual Básico de Métodos em Morfologia Vegetal [Basic Manual of Methods in Plant Morphology]. — EDUR, Rio de Janeiro 1997. [In Port.]Google Scholar
  32. Krause, G.: Photoinhibition of photosynthesis. an evaluation of damaging and protective mechanisms. — Physiol. Plant. 74: 566–574, 1988.CrossRefGoogle Scholar
  33. Le Van, Q., Samson, G., Desjardins, Y.: Opposite effects of exogenous sucrose on growth, photosynthesis and carbon metabolism of in vitro plantlets of tomato (L. esculentum Mill.) grown under two levels of irradiances and CO2 concentrations. — J. Plant Physiol. 158: 599–605, 2001.CrossRefGoogle Scholar
  34. Lichtenthaler, H., Wellburn, A.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. — Biochem. Soc. Trans. 603: 591–592, 1983.Google Scholar
  35. Long, S., Humphries, S., Falkowski, P.: Photoinhibition of photosynthesis in nature. — Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 633–662, 1994.CrossRefGoogle Scholar
  36. Majada, J., Sierra, M., Sánchez-Tamés, R.: Air exchange rate affects the in vitro developed leaf cuticle of carnation. — Sci. Hort. 87: 121–130, 2001.CrossRefGoogle Scholar
  37. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence: a practical guide. — J. exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  38. Müller, P., Li, X.P., Nigogi, K.K.: Non-photochemical quenching. A response to excess light energy. — Plant Physiol. 125: 1558–1566, 2001.PubMedCrossRefGoogle Scholar
  39. Munné-Bosch, S.: The role of α-tocopherol in plant stress tolerance. — J. Plant Physiol. 162: 743–748, 2005.PubMedCrossRefGoogle Scholar
  40. Navarro, C., Teisson, C., Côte, F., Ganry, J.: Effects of light intensity and CO2 concentration on growth of banana plants (Musa AAA, cultivar ‘Petit Naine’) in vitro and subsequent growth following acclimatization. — Sci. Hort. 60: 41–54, 1994.CrossRefGoogle Scholar
  41. Olsson, T., Leverenz, J.W.: Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve. — Plant Cell Environ. 17: 701–710, 1994.CrossRefGoogle Scholar
  42. Osório, M.L., Osório, J., Romano, A.: Chlorophyll fluorescence in micropropagated Rhododendron ponticum subsp. baeticum plants in response to different irradiances. — Biol. Plant. 54: 415–422, 2010.CrossRefGoogle Scholar
  43. Pierik, R.: Rejuvenation and micropropagation. — In: Nijkamp, H., Van der Plas, Van Artrijk, J. (ed.): Progress in Plant Cellular and Molecular Biology. Pp. 91–101. Kluwer Academic Publishers, Dordrecht 1990.CrossRefGoogle Scholar
  44. Pospíšilová, J., Solárová, J., Častský, J.: Photosynthetic responses to stresses during in vitro cultivation. — Photosynthetica 26: 3–18, 1992.Google Scholar
  45. Pospíšilová, J., Haisel, D., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, S., Procházková, D., Šrámek, F.: Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. — Plant Cell Tissue Organ Cult. 61: 125–133, 2000.CrossRefGoogle Scholar
  46. Ríos, D., Avilés, F., Sánchez-Olate, M., Escobar, R., Pereira, G.: Rooting rate variation related to subculture number diameter of chestnut Castanea sativa Mill. microshoots. — Agr. Técn. 65: 258–264, 2005.Google Scholar
  47. Rizzini, C.T.: Tratado de Fitogeografia do Brasil [Treaty Phytogeography in Brazil: Ecological Aspects]. — HUCITEC, EDUSP, Sao Paulo 1976. [In Port.]Google Scholar
  48. Rodríguez, R., Aragón, A., Escalona, M., González, J., Desjardins Y.: Carbon metabolism in leaves of micropropagated sugarcane during acclimatization phase. — In Vitro cell. dev. Biol. Plant 44: 533–539, 2008.CrossRefGoogle Scholar
  49. Rosenqvist, E., Van Kooten, O.: Chlorophyll fluorescence: a general description and nomenclature. — In: De Ell, J., Toivonen, P. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. — Kluwer Academic Publishers, Dordrecht 2003.Google Scholar
  50. Seon, J., Cui, Y., Kozai, T., Paek, K.: Influence of in vitro growth conditions on photosynthetic competence and survival ratio of Rehmannia glutinosa plantets during acclimatization period. — Plant Cell Tissue Organ Cult. 64: 135–142, 2000.CrossRefGoogle Scholar
  51. Serret, M.D., Trillas, M.I., Mata, J., Araus, J.L.: Development of photoautotrophy and photoinhibition of Gardenia jasminoides plantlets during micropropagation. — Plant Cell Tissue Organ Cult. 45: 1–16, 1996.CrossRefGoogle Scholar
  52. Steinmüller, D., Tevini, M.: Composition and function of plastoglobuli. I. Isolation and purification from chloroplasts and chromoplasts. — Planta 163: 201–207, 1985.CrossRefGoogle Scholar
  53. Taiz, L., Zeiger, E.: Plant Physiology. 3th Ed. — Sinauer Associates, Sunderland 2002.Google Scholar
  54. Talavera, C., Oropeza, C., Cahue, A., Santamaría, J.: Status of research on coconut embryo culture and acclimatization techniques in Mexico. — In: Batugal, P., Engelman, F. (ed.): Coconut Embryo Culture and Acclimatization. Pp. 43–54. IPGRI, Roma 1998.Google Scholar
  55. Tichá, I., Čáp, F., Pacovská, D., Hofman, P., Haisel, D., Čapková, V., Schäfer, C.: Culture on sugar medium enhances photosynthesis capacity and high light resistance of plantlets grown in vitro. — Physiol. Plant. 102: 155–162, 1998.CrossRefGoogle Scholar
  56. Vieitez, A., Ballester, A., San José, M.C., Vieitez, E.: Anatomical and chemical studies of vitrified shoots of chestnut regenerated in vitro. — Physiol. Plant. 65: 177–184, 1986.CrossRefGoogle Scholar
  57. Walters, R.G.: Towards an understanding of photosynthetic acclimation. — J. exp. Bot. 56: 435–441, 2005.PubMedCrossRefGoogle Scholar
  58. Wetztein, H.I., Sommer, H.E.: Leaf anatomy of tissue cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization. — Amer. J. Bot. 69: 1579–1586, 1982.CrossRefGoogle Scholar
  59. Zobayed, S., Armstrong, J., Armstrong, W.: Leaf anatomy of in vitro tobacco and cauliflower plantlets as affected by different types of ventilation. — Plant. Sci. 161: 537–548, 2001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • P. L. Sáez
    • 1
  • L. A. Bravo
    • 3
    • 4
  • K. L. Sáez
    • 2
  • M. Sánchez-Olate
    • 1
  • M. I. Latsague
    • 5
  • D. G. Ríos
    • 1
  1. 1.Laboratorio Cultivo de Tejidos Vegetales, Facultad de Ciencias Forestales y Centro de BiotecnologíaUniversidad de ConcepciónConcepciónChile
  2. 2.Departamento de Estadística, Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónConcepciónChile
  3. 3.Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales. Facultad de Ciencias Agropecuarias y ForestalesUniversidad de La FronteraTemucoChile
  4. 4.Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChile
  5. 5.Facultad de Recursos NaturalesUniversidad Católica de TemucoTemucoChile

Personalised recommendations