Advertisement

Biologia Plantarum

, Volume 56, Issue 1, pp 1–8 | Cite as

Interspecific somatic hybrids between Solanum bulbocastanum and S. tuberosum and their haploidization for potato breeding

  • M. Iovene
  • R. Aversano
  • S. Savarese
  • I. Caruso
  • A. Di Matteo
  • T. Cardi
  • L. Frusciante
  • D. Carputo
Original Papers

Abstract

Protoplast fusion between incongruent Solanum bulbocastanum and S. tuberosum haploids was accomplished to produce hybrids combining elite traits from both parents. We identified 11 somatic hybrids out of 42 regenerants analyzed through ISSR markers. Some hybrids had loss or gain of fragments compared to the parents, likely due to rearrangements and deletions of chromosome segments after fusion, and/or to somaclonal variation during hybrid regeneration. Increased heterotic vigor for some traits as well as high diversity was observed as the effect of both ploidy and fusion combination. Microsporogenesis analysis indicated the occurrence of multivalent configurations and several meiotic abnormalities, such as chromosomes bridges and various spindle orientations. Since all hybrids were sterile, in vitro anther culture was employed for haploidization as a possible strategy to overcome barriers to hybridizations. Haploids were obtained from all the tetraploid S. bulbocastanum (+) S. tuberosum somatic hybrids tested, although with differences in both the number of embryos per 100 anthers cultured and the number of differentiated green plantlets. This is the first report on the successful production of haploid plants from S. bulbocastanum (+) S. tuberosum hybrids.

Additional key words

androgenesis microsporogenesis molecular markers somaclonal variation 

Abbreviations

AFLP

amplified fragment length polymorphisms

DAPI

4′,6-diamidino-2-phenylindole

DMPD

N,N-dimethyl-p-phenylenediamine

ISSR

inter simple sequence repeats

PCA

principal component analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This is contribution No. 207 from the Department of Soil, Plant, Environmental and Animal Production Sciences. The research was carried out in the framework of the PRIN project “Characterization and selection of Solanum hybrids obtained through somatic fusion” funded by the MiUR. The authors are grateful to Prof. Antonio Evidente and Dr. Anna Andolfi for help in chemical analysis, to Dr. Wendy Craig for invaluable and constant suggestions on protoplast isolation and culture and to Dr. Mark Walters for English language editing of the manuscript. The first two authors contributed equally to this work

References

  1. Austin, S., Cassels, A.C.: Variation between plants regenerated from individual calli produced from separated potato stem callus cells. — Plant Sci. Lett. 31: 107–114, 1983.CrossRefGoogle Scholar
  2. Austin, S., Pohlman, J.D., Brown, C.R., Mojtahedi, H., Santo, G.S., Douches, D.S., Helgeson, J.P.: Interspecific somatic hybridization between Solanum tuberosum L. and S. bulbocastanum Dun. as a means of transferring nematode resistance. — Amer. Potato J. 70: 485–495, 1993.CrossRefGoogle Scholar
  3. Bal, U., Abak, K.: Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. — Euphytica 158: 1–9, 2007.CrossRefGoogle Scholar
  4. Bokelmann, G.S., Roest, S.: Plant regeneration from protoplast of potato (Solanum tuberosum cv Bintje). — Z. Pflanzenphysiol. 109: 259–265, 1983.Google Scholar
  5. BoŁtowicz, D., Szczerbakowa, A., Wielgat, B.: RAPD analysis of interspecific somatic hybrids Solanum bulbocastanum (+) S. tuberosum. — Cell. mol. Biol. Lett. 10: 151–162, 2005.PubMedGoogle Scholar
  6. Bradford, M.: A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 60: 248–254, 1976.CrossRefGoogle Scholar
  7. Cardi, T.: Somatic hybridization between Solanum commersonii and Solanum tuberosum. — In: Nagata, T., Bajaj, Y.P.S. (ed.): Biotechnology in Agriculture and Forestry. Vol. 49: Somatic Hybridization in Crop Improvement II. Pp. 245–263. Springer-Verlag, Berlin — Heidelberg — New York 2001.CrossRefGoogle Scholar
  8. Cardi, T., D’Ambrosio, F., Consoli, D., Puite, K.J., Ramulu, K.S.: Production of somatic hybrids between frost tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants. — Theor. appl. Genet. 87: 193–200, 1993a.CrossRefGoogle Scholar
  9. Cardi, T., Puite, K.J., Ramulu, K.S., D’Ambrosio, F., Frusciante, L.: Production of somatic hybrids between frost tolerant Solanum commersonii and S. tuberosum: protoplast fusion, regeneration and isozyme analysis. — Amer. Potato J. 70: 753–764, 1993b.CrossRefGoogle Scholar
  10. Curry, R.F., Cussells, A.C.: Callus initiation, maintenance and shoot regeneration in potato. — In: Hall, R.D. (ed.): Methods in Molecular Biology. Plant Cell culture Protocol 111. Pp. 31–41, Humana Press, Totowa 1999.CrossRefGoogle Scholar
  11. Datta, S.K.: Androgenic haploids: factors controlling development and its application in crop improvement. — Curr. Sci. India 89: 1870–1878, 2005.Google Scholar
  12. Dong, F., Song, J., Naess, S.K., Helgeson, J.P., Gebhardt, G., Jiang, J.: Development and applications of a set of chromosome specific cytogenetic DNA markers in potato. — Theor. appl. Genet. 101: 1001–1007, 2000.CrossRefGoogle Scholar
  13. Ehlenfeldt, M.K., Hanneman, R.E., Jr.: Genetic control of endosperm balance number (EBN): three additive loci in a threshold-like system. — Theor. appl. Genet. 75: 825–832, 1988.Google Scholar
  14. Fogliano, V., Verde, V., Randazzo, G., Ritieni, A.: Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. — J. Agr. Food Chem. 47: 1035–1040, 1999.CrossRefGoogle Scholar
  15. Haberlach, G.T., Cohen, B.A., Reichert, N.A., Baer, M.A., Towill, L.E., Helgeson, J.P.: Isolation, culture and regeneration of protoplasts from potato and several related Solanum species. — Plant Sci. 39: 67–74, 1985.CrossRefGoogle Scholar
  16. Helgeson, J.P., Pohlman, J.D., Austin, S., Haberlach, G.T., Wielgus, S.M., Ronis, D., Zambolin, L., Tooley, P., McGrath, J.M., James, R.V., Stevenson, W.R.: Somatic hybrids between Solanum bulbocastanum and potato: a new source of resistance to late blight. — Theor. appl. Genet. 96: 738–742, 1998.CrossRefGoogle Scholar
  17. Hunt, G.J., Helgeson, J.P.: A medium and a simple procedure for growing single cells from Solanum species. — Plant Sci. 60: 251–257, 1989.CrossRefGoogle Scholar
  18. Iovene, M., Savarese, S., Cardi, T., Frusciante, L., Scotti, N., Simon, P.W., Carputo, D.: Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids. — Genome 50: 443–450, 2007.PubMedCrossRefGoogle Scholar
  19. Johnston, S.A., Den Nijs, T.P.M., Peloquin, S.J., Hanneman, R.E.: The significance of genic balance to endosperm development in interspecific crosses. — Theor. appl. Genet. 57: 5–9, 1980.Google Scholar
  20. Kopecký, D., Vagera, J.: The use of mutagens to increase the efficiency of the androgenic progeny production in Solanum nugrum. — Biol. Plant. 49: 181–186, 2005.CrossRefGoogle Scholar
  21. Matthews, D., McNicoll, J., Harding, K., Millam, S.: 5′-Anchored simple-sequence repeat primers are useful for analysing potato somatic hybrids. — Plant Cell Rep. 19: 210–212, 1999.CrossRefGoogle Scholar
  22. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  23. Nei, M., Li, W.H.: Mathematical model for studying genetic variation in terms of restriction endonucleases. — Proc. nat. Acad. Sci. USA 76: 5269–5273, 1979.PubMedCrossRefGoogle Scholar
  24. Novy, R.G., Helgeson, J.P.: Somatic hybrids between Solanum etuberosum and diploid, tuber bearing Solanum clones. — Theor. appl. Genet. 89: 775–782, 1994.Google Scholar
  25. Orczyk, W., Przetakiewicz, J., Nadoloska-Orczyk, A.: Somatic hybrids of Solanum tuberosum — application to genetics and breeding. — Plant Cell Tissue Organ Cult. 74: 1–13, 2003.CrossRefGoogle Scholar
  26. Polgar, Z.S., Preiszner, J., Dudits, D., Feher, A.: Vigorous growth of fusion products allows highly efficient selection of interspecific potato somatic hybrids: molecular proofs. — Plant Cell Rep. 12: 399–402, 1993.CrossRefGoogle Scholar
  27. Pret’ová, A., Obert, B., Bartošová, Z.: Haploid formation in maize, barley, flax, and potato. — Protoplasma 228: 107–114, 2006.PubMedCrossRefGoogle Scholar
  28. Rokka, V.M., Laurila, J., Tauriainen, A., Laakso, I., Larkka, J., Metzler, M., Pietilä, L.: Glycoalkaloid aglycone accumulations associated with infection by Clavibacter michiganensis ssp. sepedonicus in potato species Solanum acuale and Solanum tuberosum and their interspecific somatic hybrids. — Plant Cell Rep. 23: 683–691, 2005.PubMedCrossRefGoogle Scholar
  29. Rokka, V.M., Valkonen, J.P.T., Pehu, E.: Production and characterization of haploids from somatic hybrids between Solanum brevidens and S. tuberosum through anther culture. — Plant Sci. 112: 85–95, 1995.CrossRefGoogle Scholar
  30. Savarese, S.: [Genotyping and Phenotyping of Solanum tuberosum (+) S. bulbocastanum somatic hybrids. Usefulness for potato breeding.] — PhD thesis, University of Naples, Naples 2007. [In Italian]Google Scholar
  31. Scarano, M.T., Abbate, L., Ferrante, S., Lucretti, S., Tusa, N.: ISSR-PCR technique: a useful method for characterizing new allotetraploid somatic hybrids of mandarin. — Plant Cell Rep. 20: 1162–1166, 2002.CrossRefGoogle Scholar
  32. Sidorov, V.A., Kasten, D., Pang, S.Z., Hajdukiewicz, P.T.J., Staub, J.M., Nehra, N.S.: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. — Plant J. 19: 209–216, 1999.PubMedCrossRefGoogle Scholar
  33. Spooner, D.M., Hijmans, R.J.: Potato systematics and germplasm collecting, 1989–2000. — Amer. J. Potato Res. 78: 237–268, 2001.CrossRefGoogle Scholar
  34. Taski-Ajdukovic, K., Dragana Vasic, D., Nagl, N.: Regeneration of interspecific somatic hybrids between Helianthus annuus L. and Helianthus maximiliani (Schrader) via protoplast electrofusion. — Plant Cell Rep. 7: 698–704, 2006.CrossRefGoogle Scholar
  35. Tek, A.L., Walter, R., Helgeson, J.P., Jiang, J.: Transfer of tuber soft rot and early blight resistances from Solanum brevidens into cultivated potato. — Theor. appl. Genet. 109: 249–254, 2003.Google Scholar
  36. Vos, P., Hogers, R., Bleker, M.: AFLP: a new technique for DNA fingerprinting. — Nucl. Acids Res. 23: 4407–4414, 1995.PubMedCrossRefGoogle Scholar
  37. Wenzel, G., Uhrig, H.: Breeding for nematode and virus resistance in potato via anther culture. — Theor. appl. Genet. 59: 333–340, 1981.CrossRefGoogle Scholar
  38. Yermishin, A.P., Makhan’ko, O.V., Voronkova, E.V.: Application of somatic hybrids between dihaploids of potato Solanum tuberosum L. and wild diploid species from Mexico in breeding: generation and backcrossing of dihaploid of somatic hybrids. — Russ. J. Genet. 42: 1414–1421, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Iovene
    • 1
  • R. Aversano
    • 2
  • S. Savarese
    • 2
  • I. Caruso
    • 2
  • A. Di Matteo
    • 2
  • T. Cardi
    • 3
  • L. Frusciante
    • 2
  • D. Carputo
    • 2
  1. 1.Institute of Plant Genetics, Res. Div. BariCNR-IGVBariItaly
  2. 2.Department of Soil, Plant, Environmental and Animal Production SciencesUniversity of Naples Federico IIPorticiItaly
  3. 3.Institute of Plant Genetics, Res. Div. PorticiCNR-IGVPorticiItaly

Personalised recommendations